xref: /DragonOS/kernel/src/process/mod.rs (revision 15b94df01adc7e8931961b9b9a89db4e7c014b64)
1 use core::{
2     hash::Hash,
3     hint::spin_loop,
4     intrinsics::{likely, unlikely},
5     mem::ManuallyDrop,
6     sync::atomic::{compiler_fence, fence, AtomicBool, AtomicUsize, Ordering},
7 };
8 
9 use alloc::{
10     string::{String, ToString},
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 use hashbrown::HashMap;
15 use system_error::SystemError;
16 
17 use crate::{
18     arch::{
19         cpu::current_cpu_id,
20         ipc::signal::{AtomicSignal, SigSet, Signal},
21         process::ArchPCBInfo,
22         CurrentIrqArch,
23     },
24     driver::tty::tty_core::TtyCore,
25     exception::InterruptArch,
26     filesystem::{
27         procfs::procfs_unregister_pid,
28         vfs::{file::FileDescriptorVec, FileType},
29     },
30     ipc::signal_types::{SigInfo, SigPending, SignalStruct},
31     kdebug, kinfo,
32     libs::{
33         align::AlignedBox,
34         casting::DowncastArc,
35         futex::{
36             constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
37             futex::{Futex, RobustListHead},
38         },
39         lock_free_flags::LockFreeFlags,
40         rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
41         spinlock::{SpinLock, SpinLockGuard},
42         wait_queue::WaitQueue,
43     },
44     mm::{
45         percpu::{PerCpu, PerCpuVar},
46         set_IDLE_PROCESS_ADDRESS_SPACE,
47         ucontext::AddressSpace,
48         VirtAddr,
49     },
50     net::socket::SocketInode,
51     sched::completion::Completion,
52     sched::{
53         cpu_rq, fair::FairSchedEntity, prio::MAX_PRIO, DequeueFlag, EnqueueFlag, OnRq, SchedMode,
54         WakeupFlags, __schedule,
55     },
56     smp::{
57         core::smp_get_processor_id,
58         cpu::{AtomicProcessorId, ProcessorId},
59         kick_cpu,
60     },
61     syscall::{user_access::clear_user, Syscall},
62 };
63 
64 use self::kthread::WorkerPrivate;
65 
66 pub mod abi;
67 pub mod c_adapter;
68 pub mod exec;
69 pub mod exit;
70 pub mod fork;
71 pub mod idle;
72 pub mod kthread;
73 pub mod pid;
74 pub mod resource;
75 pub mod stdio;
76 pub mod syscall;
77 pub mod utils;
78 
79 /// 系统中所有进程的pcb
80 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
81 
82 pub static mut PROCESS_SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
83 
84 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
85 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
86 
87 #[derive(Debug)]
88 pub struct SwitchResult {
89     pub prev_pcb: Option<Arc<ProcessControlBlock>>,
90     pub next_pcb: Option<Arc<ProcessControlBlock>>,
91 }
92 
93 impl SwitchResult {
94     pub fn new() -> Self {
95         Self {
96             prev_pcb: None,
97             next_pcb: None,
98         }
99     }
100 }
101 
102 #[derive(Debug)]
103 pub struct ProcessManager;
104 impl ProcessManager {
105     #[inline(never)]
106     fn init() {
107         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
108         if INIT_FLAG
109             .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
110             .is_err()
111         {
112             panic!("ProcessManager has been initialized!");
113         }
114 
115         unsafe {
116             compiler_fence(Ordering::SeqCst);
117             kdebug!("To create address space for INIT process.");
118             // test_buddy();
119             set_IDLE_PROCESS_ADDRESS_SPACE(
120                 AddressSpace::new(true).expect("Failed to create address space for INIT process."),
121             );
122             kdebug!("INIT process address space created.");
123             compiler_fence(Ordering::SeqCst);
124         };
125 
126         ALL_PROCESS.lock_irqsave().replace(HashMap::new());
127         Self::init_switch_result();
128         Self::arch_init();
129         kdebug!("process arch init done.");
130         Self::init_idle();
131         kdebug!("process idle init done.");
132 
133         unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
134         kinfo!("Process Manager initialized.");
135     }
136 
137     fn init_switch_result() {
138         let mut switch_res_vec: Vec<SwitchResult> = Vec::new();
139         for _ in 0..PerCpu::MAX_CPU_NUM {
140             switch_res_vec.push(SwitchResult::new());
141         }
142         unsafe {
143             PROCESS_SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap());
144         }
145     }
146 
147     /// 判断进程管理器是否已经初始化完成
148     pub fn initialized() -> bool {
149         unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
150     }
151 
152     /// 获取当前进程的pcb
153     pub fn current_pcb() -> Arc<ProcessControlBlock> {
154         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
155             kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
156             loop {
157                 spin_loop();
158             }
159         }
160         return ProcessControlBlock::arch_current_pcb();
161     }
162 
163     /// 获取当前进程的pid
164     ///
165     /// 如果进程管理器未初始化完成,那么返回0
166     pub fn current_pid() -> Pid {
167         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
168             return Pid(0);
169         }
170 
171         return ProcessManager::current_pcb().pid();
172     }
173 
174     /// 增加当前进程的锁持有计数
175     #[inline(always)]
176     pub fn preempt_disable() {
177         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
178             ProcessManager::current_pcb().preempt_disable();
179         }
180     }
181 
182     /// 减少当前进程的锁持有计数
183     #[inline(always)]
184     pub fn preempt_enable() {
185         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
186             ProcessManager::current_pcb().preempt_enable();
187         }
188     }
189 
190     /// 根据pid获取进程的pcb
191     ///
192     /// ## 参数
193     ///
194     /// - `pid` : 进程的pid
195     ///
196     /// ## 返回值
197     ///
198     /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
199     pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
200         return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
201     }
202 
203     /// 向系统中添加一个进程的pcb
204     ///
205     /// ## 参数
206     ///
207     /// - `pcb` : 进程的pcb
208     ///
209     /// ## 返回值
210     ///
211     /// 无
212     pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
213         ALL_PROCESS
214             .lock_irqsave()
215             .as_mut()
216             .unwrap()
217             .insert(pcb.pid(), pcb.clone());
218     }
219 
220     /// 唤醒一个进程
221     pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
222         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
223         let state = pcb.sched_info().inner_lock_read_irqsave().state();
224         if state.is_blocked() {
225             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
226             let state = writer.state();
227             if state.is_blocked() {
228                 writer.set_state(ProcessState::Runnable);
229                 writer.set_wakeup();
230 
231                 // avoid deadlock
232                 drop(writer);
233 
234                 let rq =
235                     cpu_rq(pcb.sched_info().on_cpu().unwrap_or(current_cpu_id()).data() as usize);
236 
237                 let (rq, _guard) = rq.self_lock();
238                 rq.update_rq_clock();
239                 rq.activate_task(
240                     pcb,
241                     EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
242                 );
243 
244                 rq.check_preempt_currnet(pcb, WakeupFlags::empty());
245 
246                 // sched_enqueue(pcb.clone(), true);
247                 return Ok(());
248             } else if state.is_exited() {
249                 return Err(SystemError::EINVAL);
250             } else {
251                 return Ok(());
252             }
253         } else if state.is_exited() {
254             return Err(SystemError::EINVAL);
255         } else {
256             return Ok(());
257         }
258     }
259 
260     /// 唤醒暂停的进程
261     pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
262         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
263         let state = pcb.sched_info().inner_lock_read_irqsave().state();
264         if let ProcessState::Stopped = state {
265             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
266             let state = writer.state();
267             if let ProcessState::Stopped = state {
268                 writer.set_state(ProcessState::Runnable);
269                 // avoid deadlock
270                 drop(writer);
271 
272                 let rq = cpu_rq(pcb.sched_info().on_cpu().unwrap().data() as usize);
273 
274                 let (rq, _guard) = rq.self_lock();
275                 rq.update_rq_clock();
276                 rq.activate_task(
277                     pcb,
278                     EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
279                 );
280 
281                 rq.check_preempt_currnet(pcb, WakeupFlags::empty());
282 
283                 // sched_enqueue(pcb.clone(), true);
284                 return Ok(());
285             } else if state.is_runnable() {
286                 return Ok(());
287             } else {
288                 return Err(SystemError::EINVAL);
289             }
290         } else if state.is_runnable() {
291             return Ok(());
292         } else {
293             return Err(SystemError::EINVAL);
294         }
295     }
296 
297     /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
298     ///
299     /// ## 注意
300     ///
301     /// - 进入当前函数之前,不能持有sched_info的锁
302     /// - 进入当前函数之前,必须关闭中断
303     /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
304     pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
305         assert!(
306             !CurrentIrqArch::is_irq_enabled(),
307             "interrupt must be disabled before enter ProcessManager::mark_sleep()"
308         );
309         let pcb = ProcessManager::current_pcb();
310         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
311         if !matches!(writer.state(), ProcessState::Exited(_)) {
312             writer.set_state(ProcessState::Blocked(interruptable));
313             writer.set_sleep();
314             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
315             fence(Ordering::SeqCst);
316             drop(writer);
317             return Ok(());
318         }
319         return Err(SystemError::EINTR);
320     }
321 
322     /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
323     ///
324     /// ## 注意
325     ///
326     /// - 进入当前函数之前,不能持有sched_info的锁
327     /// - 进入当前函数之前,必须关闭中断
328     pub fn mark_stop() -> Result<(), SystemError> {
329         assert!(
330             !CurrentIrqArch::is_irq_enabled(),
331             "interrupt must be disabled before enter ProcessManager::mark_stop()"
332         );
333 
334         let pcb = ProcessManager::current_pcb();
335         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
336         if !matches!(writer.state(), ProcessState::Exited(_)) {
337             writer.set_state(ProcessState::Stopped);
338             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
339             drop(writer);
340 
341             return Ok(());
342         }
343         return Err(SystemError::EINTR);
344     }
345     /// 当子进程退出后向父进程发送通知
346     fn exit_notify() {
347         let current = ProcessManager::current_pcb();
348         // 让INIT进程收养所有子进程
349         if current.pid() != Pid(1) {
350             unsafe {
351                 current
352                     .adopt_childen()
353                     .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
354             };
355             let r = current.parent_pcb.read_irqsave().upgrade();
356             if r.is_none() {
357                 return;
358             }
359             let parent_pcb = r.unwrap();
360             let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
361             if r.is_err() {
362                 kwarn!(
363                     "failed to send kill signal to {:?}'s parent pcb {:?}",
364                     current.pid(),
365                     parent_pcb.pid()
366                 );
367             }
368             // todo: 这里需要向父进程发送SIGCHLD信号
369             // todo: 这里还需要根据线程组的信息,决定信号的发送
370         }
371     }
372 
373     /// 退出当前进程
374     ///
375     /// ## 参数
376     ///
377     /// - `exit_code` : 进程的退出码
378     pub fn exit(exit_code: usize) -> ! {
379         // 关中断
380         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
381         let pcb = ProcessManager::current_pcb();
382         let pid = pcb.pid();
383         pcb.sched_info
384             .inner_lock_write_irqsave()
385             .set_state(ProcessState::Exited(exit_code));
386         pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
387 
388         let rq = cpu_rq(smp_get_processor_id().data() as usize);
389         let (rq, guard) = rq.self_lock();
390         rq.deactivate_task(
391             pcb.clone(),
392             DequeueFlag::DEQUEUE_SLEEP | DequeueFlag::DEQUEUE_NOCLOCK,
393         );
394         drop(guard);
395 
396         // 进行进程退出后的工作
397         let thread = pcb.thread.write_irqsave();
398         if let Some(addr) = thread.set_child_tid {
399             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
400         }
401 
402         if let Some(addr) = thread.clear_child_tid {
403             if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
404                 let _ =
405                     Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
406             }
407             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
408         }
409 
410         RobustListHead::exit_robust_list(pcb.clone());
411 
412         // 如果是vfork出来的进程,则需要处理completion
413         if thread.vfork_done.is_some() {
414             thread.vfork_done.as_ref().unwrap().complete_all();
415         }
416         drop(thread);
417         unsafe { pcb.basic_mut().set_user_vm(None) };
418         drop(pcb);
419         ProcessManager::exit_notify();
420         // unsafe { CurrentIrqArch::interrupt_enable() };
421         __schedule(SchedMode::SM_NONE);
422         kerror!("pid {pid:?} exited but sched again!");
423         #[allow(clippy::empty_loop)]
424         loop {
425             spin_loop();
426         }
427     }
428 
429     pub unsafe fn release(pid: Pid) {
430         let pcb = ProcessManager::find(pid);
431         if pcb.is_some() {
432             // let pcb = pcb.unwrap();
433             // 判断该pcb是否在全局没有任何引用
434             // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
435             //          因此目前暂时注释掉,使得能跑
436             // if Arc::strong_count(&pcb) <= 2 {
437             //     drop(pcb);
438             //     ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
439             // } else {
440             //     // 如果不为1就panic
441             //     let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(),  Arc::strong_count(&pcb));
442             //     kerror!("{}", msg);
443             //     panic!()
444             // }
445 
446             ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
447         }
448     }
449 
450     /// 上下文切换完成后的钩子函数
451     unsafe fn switch_finish_hook() {
452         // kdebug!("switch_finish_hook");
453         let prev_pcb = PROCESS_SWITCH_RESULT
454             .as_mut()
455             .unwrap()
456             .get_mut()
457             .prev_pcb
458             .take()
459             .expect("prev_pcb is None");
460         let next_pcb = PROCESS_SWITCH_RESULT
461             .as_mut()
462             .unwrap()
463             .get_mut()
464             .next_pcb
465             .take()
466             .expect("next_pcb is None");
467 
468         // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
469         prev_pcb.arch_info.force_unlock();
470         next_pcb.arch_info.force_unlock();
471     }
472 
473     /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
474     ///
475     /// ## 参数
476     ///
477     /// - `pcb` : 进程的pcb
478     #[allow(dead_code)]
479     pub fn kick(pcb: &Arc<ProcessControlBlock>) {
480         ProcessManager::current_pcb().preempt_disable();
481         let cpu_id = pcb.sched_info().on_cpu();
482 
483         if let Some(cpu_id) = cpu_id {
484             if pcb.pid() == cpu_rq(cpu_id.data() as usize).current().pid() {
485                 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
486             }
487         }
488 
489         ProcessManager::current_pcb().preempt_enable();
490     }
491 }
492 
493 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
494 #[cfg(target_arch = "x86_64")]
495 #[inline(never)]
496 pub unsafe extern "sysv64" fn switch_finish_hook() {
497     ProcessManager::switch_finish_hook();
498 }
499 #[cfg(target_arch = "riscv64")]
500 #[inline(always)]
501 pub unsafe fn switch_finish_hook() {
502     ProcessManager::switch_finish_hook();
503 }
504 
505 int_like!(Pid, AtomicPid, usize, AtomicUsize);
506 
507 impl ToString for Pid {
508     fn to_string(&self) -> String {
509         self.0.to_string()
510     }
511 }
512 
513 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
514 pub enum ProcessState {
515     /// The process is running on a CPU or in a run queue.
516     Runnable,
517     /// The process is waiting for an event to occur.
518     /// 其中的bool表示该等待过程是否可以被打断。
519     /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
520     /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
521     Blocked(bool),
522     /// 进程被信号终止
523     Stopped,
524     /// 进程已经退出,usize表示进程的退出码
525     Exited(usize),
526 }
527 
528 #[allow(dead_code)]
529 impl ProcessState {
530     #[inline(always)]
531     pub fn is_runnable(&self) -> bool {
532         return matches!(self, ProcessState::Runnable);
533     }
534 
535     #[inline(always)]
536     pub fn is_blocked(&self) -> bool {
537         return matches!(self, ProcessState::Blocked(_));
538     }
539 
540     #[inline(always)]
541     pub fn is_blocked_interruptable(&self) -> bool {
542         return matches!(self, ProcessState::Blocked(true));
543     }
544 
545     /// Returns `true` if the process state is [`Exited`].
546     #[inline(always)]
547     pub fn is_exited(&self) -> bool {
548         return matches!(self, ProcessState::Exited(_));
549     }
550 
551     /// Returns `true` if the process state is [`Stopped`].
552     ///
553     /// [`Stopped`]: ProcessState::Stopped
554     #[inline(always)]
555     pub fn is_stopped(&self) -> bool {
556         matches!(self, ProcessState::Stopped)
557     }
558 
559     /// Returns exit code if the process state is [`Exited`].
560     #[inline(always)]
561     pub fn exit_code(&self) -> Option<usize> {
562         match self {
563             ProcessState::Exited(code) => Some(*code),
564             _ => None,
565         }
566     }
567 }
568 
569 bitflags! {
570     /// pcb的标志位
571     pub struct ProcessFlags: usize {
572         /// 当前pcb表示一个内核线程
573         const KTHREAD = 1 << 0;
574         /// 当前进程需要被调度
575         const NEED_SCHEDULE = 1 << 1;
576         /// 进程由于vfork而与父进程存在资源共享
577         const VFORK = 1 << 2;
578         /// 进程不可被冻结
579         const NOFREEZE = 1 << 3;
580         /// 进程正在退出
581         const EXITING = 1 << 4;
582         /// 进程由于接收到终止信号唤醒
583         const WAKEKILL = 1 << 5;
584         /// 进程由于接收到信号而退出.(Killed by a signal)
585         const SIGNALED = 1 << 6;
586         /// 进程需要迁移到其他cpu上
587         const NEED_MIGRATE = 1 << 7;
588         /// 随机化的虚拟地址空间,主要用于动态链接器的加载
589         const RANDOMIZE = 1 << 8;
590     }
591 }
592 
593 #[derive(Debug)]
594 pub struct ProcessControlBlock {
595     /// 当前进程的pid
596     pid: Pid,
597     /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
598     tgid: Pid,
599 
600     basic: RwLock<ProcessBasicInfo>,
601     /// 当前进程的自旋锁持有计数
602     preempt_count: AtomicUsize,
603 
604     flags: LockFreeFlags<ProcessFlags>,
605     worker_private: SpinLock<Option<WorkerPrivate>>,
606     /// 进程的内核栈
607     kernel_stack: RwLock<KernelStack>,
608 
609     /// 系统调用栈
610     syscall_stack: RwLock<KernelStack>,
611 
612     /// 与调度相关的信息
613     sched_info: ProcessSchedulerInfo,
614     /// 与处理器架构相关的信息
615     arch_info: SpinLock<ArchPCBInfo>,
616     /// 与信号处理相关的信息(似乎可以是无锁的)
617     sig_info: RwLock<ProcessSignalInfo>,
618     /// 信号处理结构体
619     sig_struct: SpinLock<SignalStruct>,
620     /// 退出信号S
621     exit_signal: AtomicSignal,
622 
623     /// 父进程指针
624     parent_pcb: RwLock<Weak<ProcessControlBlock>>,
625     /// 真实父进程指针
626     real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
627 
628     /// 子进程链表
629     children: RwLock<Vec<Pid>>,
630 
631     /// 等待队列
632     wait_queue: WaitQueue,
633 
634     /// 线程信息
635     thread: RwLock<ThreadInfo>,
636 
637     /// 进程的robust lock列表
638     robust_list: RwLock<Option<RobustListHead>>,
639 }
640 
641 impl ProcessControlBlock {
642     /// Generate a new pcb.
643     ///
644     /// ## 参数
645     ///
646     /// - `name` : 进程的名字
647     /// - `kstack` : 进程的内核栈
648     ///
649     /// ## 返回值
650     ///
651     /// 返回一个新的pcb
652     pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
653         return Self::do_create_pcb(name, kstack, false);
654     }
655 
656     /// 创建一个新的idle进程
657     ///
658     /// 请注意,这个函数只能在进程管理初始化的时候调用。
659     pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
660         let name = format!("idle-{}", cpu_id);
661         return Self::do_create_pcb(name, kstack, true);
662     }
663 
664     #[inline(never)]
665     fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
666         let (pid, ppid, cwd) = if is_idle {
667             (Pid(0), Pid(0), "/".to_string())
668         } else {
669             let ppid = ProcessManager::current_pcb().pid();
670             let cwd = ProcessManager::current_pcb().basic().cwd();
671             (Self::generate_pid(), ppid, cwd)
672         };
673 
674         let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
675         let preempt_count = AtomicUsize::new(0);
676         let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
677 
678         let sched_info = ProcessSchedulerInfo::new(None);
679         let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
680 
681         let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
682             .map(|p| Arc::downgrade(&p))
683             .unwrap_or_default();
684 
685         let pcb = Self {
686             pid,
687             tgid: pid,
688             basic: basic_info,
689             preempt_count,
690             flags,
691             kernel_stack: RwLock::new(kstack),
692             syscall_stack: RwLock::new(KernelStack::new().unwrap()),
693             worker_private: SpinLock::new(None),
694             sched_info,
695             arch_info,
696             sig_info: RwLock::new(ProcessSignalInfo::default()),
697             sig_struct: SpinLock::new(SignalStruct::new()),
698             exit_signal: AtomicSignal::new(Signal::SIGCHLD),
699             parent_pcb: RwLock::new(ppcb.clone()),
700             real_parent_pcb: RwLock::new(ppcb),
701             children: RwLock::new(Vec::new()),
702             wait_queue: WaitQueue::default(),
703             thread: RwLock::new(ThreadInfo::new()),
704             robust_list: RwLock::new(None),
705         };
706 
707         // 初始化系统调用栈
708         #[cfg(target_arch = "x86_64")]
709         pcb.arch_info
710             .lock()
711             .init_syscall_stack(&pcb.syscall_stack.read());
712 
713         let pcb = Arc::new(pcb);
714 
715         pcb.sched_info()
716             .sched_entity()
717             .force_mut()
718             .set_pcb(Arc::downgrade(&pcb));
719         // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
720         unsafe {
721             pcb.kernel_stack
722                 .write()
723                 .set_pcb(Arc::downgrade(&pcb))
724                 .unwrap();
725 
726             pcb.syscall_stack
727                 .write()
728                 .set_pcb(Arc::downgrade(&pcb))
729                 .unwrap()
730         };
731 
732         // 将当前pcb加入父进程的子进程哈希表中
733         if pcb.pid() > Pid(1) {
734             if let Some(ppcb_arc) = pcb.parent_pcb.read_irqsave().upgrade() {
735                 let mut children = ppcb_arc.children.write_irqsave();
736                 children.push(pcb.pid());
737             } else {
738                 panic!("parent pcb is None");
739             }
740         }
741 
742         return pcb;
743     }
744 
745     /// 生成一个新的pid
746     #[inline(always)]
747     fn generate_pid() -> Pid {
748         static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
749         return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
750     }
751 
752     /// 返回当前进程的锁持有计数
753     #[inline(always)]
754     pub fn preempt_count(&self) -> usize {
755         return self.preempt_count.load(Ordering::SeqCst);
756     }
757 
758     /// 增加当前进程的锁持有计数
759     #[inline(always)]
760     pub fn preempt_disable(&self) {
761         self.preempt_count.fetch_add(1, Ordering::SeqCst);
762     }
763 
764     /// 减少当前进程的锁持有计数
765     #[inline(always)]
766     pub fn preempt_enable(&self) {
767         self.preempt_count.fetch_sub(1, Ordering::SeqCst);
768     }
769 
770     #[inline(always)]
771     pub unsafe fn set_preempt_count(&self, count: usize) {
772         self.preempt_count.store(count, Ordering::SeqCst);
773     }
774 
775     #[inline(always)]
776     pub fn flags(&self) -> &mut ProcessFlags {
777         return self.flags.get_mut();
778     }
779 
780     /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
781     /// 否则会导致死锁
782     #[inline(always)]
783     pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
784         return self.basic.read_irqsave();
785     }
786 
787     #[inline(always)]
788     pub fn set_name(&self, name: String) {
789         self.basic.write().set_name(name);
790     }
791 
792     #[inline(always)]
793     pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
794         return self.basic.write_irqsave();
795     }
796 
797     /// # 获取arch info的锁,同时关闭中断
798     #[inline(always)]
799     pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
800         return self.arch_info.lock_irqsave();
801     }
802 
803     /// # 获取arch info的锁,但是不关闭中断
804     ///
805     /// 由于arch info在进程切换的时候会使用到,
806     /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
807     ///
808     /// 只能在以下情况下使用这个函数:
809     /// - 在中断上下文中(中断已经禁用),获取arch info的锁。
810     /// - 刚刚创建新的pcb
811     #[inline(always)]
812     pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
813         return self.arch_info.lock();
814     }
815 
816     #[inline(always)]
817     pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
818         return self.kernel_stack.read();
819     }
820 
821     #[inline(always)]
822     #[allow(dead_code)]
823     pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
824         return self.kernel_stack.write();
825     }
826 
827     #[inline(always)]
828     pub fn sched_info(&self) -> &ProcessSchedulerInfo {
829         return &self.sched_info;
830     }
831 
832     #[inline(always)]
833     pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
834         return self.worker_private.lock();
835     }
836 
837     #[inline(always)]
838     pub fn pid(&self) -> Pid {
839         return self.pid;
840     }
841 
842     #[inline(always)]
843     pub fn tgid(&self) -> Pid {
844         return self.tgid;
845     }
846 
847     /// 获取文件描述符表的Arc指针
848     #[inline(always)]
849     pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
850         return self.basic.read().fd_table().unwrap();
851     }
852 
853     /// 根据文件描述符序号,获取socket对象的Arc指针
854     ///
855     /// ## 参数
856     ///
857     /// - `fd` 文件描述符序号
858     ///
859     /// ## 返回值
860     ///
861     /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
862     pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
863         let binding = ProcessManager::current_pcb().fd_table();
864         let fd_table_guard = binding.read();
865 
866         let f = fd_table_guard.get_file_by_fd(fd)?;
867         drop(fd_table_guard);
868 
869         if f.file_type() != FileType::Socket {
870             return None;
871         }
872         let socket: Arc<SocketInode> = f
873             .inode()
874             .downcast_arc::<SocketInode>()
875             .expect("Not a socket inode");
876         return Some(socket);
877     }
878 
879     /// 当前进程退出时,让初始进程收养所有子进程
880     unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
881         match ProcessManager::find(Pid(1)) {
882             Some(init_pcb) => {
883                 let childen_guard = self.children.write();
884                 let mut init_childen_guard = init_pcb.children.write();
885 
886                 childen_guard.iter().for_each(|pid| {
887                     init_childen_guard.push(*pid);
888                 });
889 
890                 return Ok(());
891             }
892             _ => Err(SystemError::ECHILD),
893         }
894     }
895 
896     /// 生成进程的名字
897     pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
898         let mut name = program_path.to_string();
899         for arg in args {
900             name.push(' ');
901             name.push_str(arg);
902         }
903         return name;
904     }
905 
906     pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
907         self.sig_info.read_irqsave()
908     }
909 
910     pub fn try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
911         for _ in 0..times {
912             if let Some(r) = self.sig_info.try_read_irqsave() {
913                 return Some(r);
914             }
915         }
916 
917         return None;
918     }
919 
920     pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
921         self.sig_info.write_irqsave()
922     }
923 
924     pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
925         for _ in 0..times {
926             if let Some(r) = self.sig_info.try_write_irqsave() {
927                 return Some(r);
928             }
929         }
930 
931         return None;
932     }
933 
934     pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
935         self.sig_struct.lock_irqsave()
936     }
937 
938     pub fn try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
939         for _ in 0..times {
940             if let Ok(r) = self.sig_struct.try_lock_irqsave() {
941                 return Some(r);
942             }
943         }
944 
945         return None;
946     }
947 
948     pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
949         self.sig_struct.lock_irqsave()
950     }
951 
952     #[inline(always)]
953     pub fn get_robust_list(&self) -> RwLockReadGuard<Option<RobustListHead>> {
954         return self.robust_list.read_irqsave();
955     }
956 
957     #[inline(always)]
958     pub fn set_robust_list(&self, new_robust_list: Option<RobustListHead>) {
959         *self.robust_list.write_irqsave() = new_robust_list;
960     }
961 }
962 
963 impl Drop for ProcessControlBlock {
964     fn drop(&mut self) {
965         let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
966         // 在ProcFS中,解除进程的注册
967         procfs_unregister_pid(self.pid())
968             .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
969 
970         if let Some(ppcb) = self.parent_pcb.read_irqsave().upgrade() {
971             ppcb.children
972                 .write_irqsave()
973                 .retain(|pid| *pid != self.pid());
974         }
975 
976         drop(irq_guard);
977     }
978 }
979 
980 /// 线程信息
981 #[derive(Debug)]
982 pub struct ThreadInfo {
983     // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
984     clear_child_tid: Option<VirtAddr>,
985     set_child_tid: Option<VirtAddr>,
986 
987     vfork_done: Option<Arc<Completion>>,
988     /// 线程组的组长
989     group_leader: Weak<ProcessControlBlock>,
990 }
991 
992 impl ThreadInfo {
993     pub fn new() -> Self {
994         Self {
995             clear_child_tid: None,
996             set_child_tid: None,
997             vfork_done: None,
998             group_leader: Weak::default(),
999         }
1000     }
1001 
1002     pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
1003         return self.group_leader.upgrade();
1004     }
1005 }
1006 
1007 /// 进程的基本信息
1008 ///
1009 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
1010 #[derive(Debug)]
1011 pub struct ProcessBasicInfo {
1012     /// 当前进程的进程组id
1013     pgid: Pid,
1014     /// 当前进程的父进程的pid
1015     ppid: Pid,
1016     /// 进程的名字
1017     name: String,
1018 
1019     /// 当前进程的工作目录
1020     cwd: String,
1021 
1022     /// 用户地址空间
1023     user_vm: Option<Arc<AddressSpace>>,
1024 
1025     /// 文件描述符表
1026     fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
1027 }
1028 
1029 impl ProcessBasicInfo {
1030     #[inline(never)]
1031     pub fn new(
1032         pgid: Pid,
1033         ppid: Pid,
1034         name: String,
1035         cwd: String,
1036         user_vm: Option<Arc<AddressSpace>>,
1037     ) -> RwLock<Self> {
1038         let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
1039         return RwLock::new(Self {
1040             pgid,
1041             ppid,
1042             name,
1043             cwd,
1044             user_vm,
1045             fd_table: Some(fd_table),
1046         });
1047     }
1048 
1049     pub fn pgid(&self) -> Pid {
1050         return self.pgid;
1051     }
1052 
1053     pub fn ppid(&self) -> Pid {
1054         return self.ppid;
1055     }
1056 
1057     pub fn name(&self) -> &str {
1058         return &self.name;
1059     }
1060 
1061     pub fn set_name(&mut self, name: String) {
1062         self.name = name;
1063     }
1064 
1065     pub fn cwd(&self) -> String {
1066         return self.cwd.clone();
1067     }
1068     pub fn set_cwd(&mut self, path: String) {
1069         return self.cwd = path;
1070     }
1071 
1072     pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
1073         return self.user_vm.clone();
1074     }
1075 
1076     pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
1077         self.user_vm = user_vm;
1078     }
1079 
1080     pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
1081         return self.fd_table.clone();
1082     }
1083 
1084     pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
1085         self.fd_table = fd_table;
1086     }
1087 }
1088 
1089 #[derive(Debug)]
1090 pub struct ProcessSchedulerInfo {
1091     /// 当前进程所在的cpu
1092     on_cpu: AtomicProcessorId,
1093     /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
1094     /// 该字段存储要被迁移到的目标处理器核心号
1095     // migrate_to: AtomicProcessorId,
1096     inner_locked: RwLock<InnerSchedInfo>,
1097     /// 进程的调度优先级
1098     // priority: SchedPriority,
1099     /// 当前进程的虚拟运行时间
1100     // virtual_runtime: AtomicIsize,
1101     /// 由实时调度器管理的时间片
1102     // rt_time_slice: AtomicIsize,
1103     pub sched_stat: RwLock<SchedInfo>,
1104     /// 调度策略
1105     pub sched_policy: RwLock<crate::sched::SchedPolicy>,
1106     /// cfs调度实体
1107     pub sched_entity: Arc<FairSchedEntity>,
1108     pub on_rq: SpinLock<OnRq>,
1109 
1110     pub prio_data: RwLock<PrioData>,
1111 }
1112 
1113 #[derive(Debug, Default)]
1114 pub struct SchedInfo {
1115     /// 记录任务在特定 CPU 上运行的次数
1116     pub pcount: usize,
1117     /// 记录任务等待在运行队列上的时间
1118     pub run_delay: usize,
1119     /// 记录任务上次在 CPU 上运行的时间戳
1120     pub last_arrival: u64,
1121     /// 记录任务上次被加入到运行队列中的时间戳
1122     pub last_queued: u64,
1123 }
1124 
1125 #[derive(Debug)]
1126 pub struct PrioData {
1127     pub prio: i32,
1128     pub static_prio: i32,
1129     pub normal_prio: i32,
1130 }
1131 
1132 impl Default for PrioData {
1133     fn default() -> Self {
1134         Self {
1135             prio: MAX_PRIO - 20,
1136             static_prio: MAX_PRIO - 20,
1137             normal_prio: MAX_PRIO - 20,
1138         }
1139     }
1140 }
1141 
1142 #[derive(Debug)]
1143 pub struct InnerSchedInfo {
1144     /// 当前进程的状态
1145     state: ProcessState,
1146     /// 进程的调度策略
1147     sleep: bool,
1148 }
1149 
1150 impl InnerSchedInfo {
1151     pub fn state(&self) -> ProcessState {
1152         return self.state;
1153     }
1154 
1155     pub fn set_state(&mut self, state: ProcessState) {
1156         self.state = state;
1157     }
1158 
1159     pub fn set_sleep(&mut self) {
1160         self.sleep = true;
1161     }
1162 
1163     pub fn set_wakeup(&mut self) {
1164         self.sleep = false;
1165     }
1166 
1167     pub fn is_mark_sleep(&self) -> bool {
1168         self.sleep
1169     }
1170 }
1171 
1172 impl ProcessSchedulerInfo {
1173     #[inline(never)]
1174     pub fn new(on_cpu: Option<ProcessorId>) -> Self {
1175         let cpu_id = on_cpu.unwrap_or(ProcessorId::INVALID);
1176         return Self {
1177             on_cpu: AtomicProcessorId::new(cpu_id),
1178             // migrate_to: AtomicProcessorId::new(ProcessorId::INVALID),
1179             inner_locked: RwLock::new(InnerSchedInfo {
1180                 state: ProcessState::Blocked(false),
1181                 sleep: false,
1182             }),
1183             // virtual_runtime: AtomicIsize::new(0),
1184             // rt_time_slice: AtomicIsize::new(0),
1185             // priority: SchedPriority::new(100).unwrap(),
1186             sched_stat: RwLock::new(SchedInfo::default()),
1187             sched_policy: RwLock::new(crate::sched::SchedPolicy::CFS),
1188             sched_entity: FairSchedEntity::new(),
1189             on_rq: SpinLock::new(OnRq::None),
1190             prio_data: RwLock::new(PrioData::default()),
1191         };
1192     }
1193 
1194     pub fn sched_entity(&self) -> Arc<FairSchedEntity> {
1195         return self.sched_entity.clone();
1196     }
1197 
1198     pub fn on_cpu(&self) -> Option<ProcessorId> {
1199         let on_cpu = self.on_cpu.load(Ordering::SeqCst);
1200         if on_cpu == ProcessorId::INVALID {
1201             return None;
1202         } else {
1203             return Some(on_cpu);
1204         }
1205     }
1206 
1207     pub fn set_on_cpu(&self, on_cpu: Option<ProcessorId>) {
1208         if let Some(cpu_id) = on_cpu {
1209             self.on_cpu.store(cpu_id, Ordering::SeqCst);
1210         } else {
1211             self.on_cpu.store(ProcessorId::INVALID, Ordering::SeqCst);
1212         }
1213     }
1214 
1215     // pub fn migrate_to(&self) -> Option<ProcessorId> {
1216     //     let migrate_to = self.migrate_to.load(Ordering::SeqCst);
1217     //     if migrate_to == ProcessorId::INVALID {
1218     //         return None;
1219     //     } else {
1220     //         return Some(migrate_to);
1221     //     }
1222     // }
1223 
1224     // pub fn set_migrate_to(&self, migrate_to: Option<ProcessorId>) {
1225     //     if let Some(data) = migrate_to {
1226     //         self.migrate_to.store(data, Ordering::SeqCst);
1227     //     } else {
1228     //         self.migrate_to
1229     //             .store(ProcessorId::INVALID, Ordering::SeqCst)
1230     //     }
1231     // }
1232 
1233     pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
1234         return self.inner_locked.write_irqsave();
1235     }
1236 
1237     pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
1238         return self.inner_locked.read_irqsave();
1239     }
1240 
1241     // pub fn inner_lock_try_read_irqsave(
1242     //     &self,
1243     //     times: u8,
1244     // ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
1245     //     for _ in 0..times {
1246     //         if let Some(r) = self.inner_locked.try_read_irqsave() {
1247     //             return Some(r);
1248     //         }
1249     //     }
1250 
1251     //     return None;
1252     // }
1253 
1254     // pub fn inner_lock_try_upgradable_read_irqsave(
1255     //     &self,
1256     //     times: u8,
1257     // ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
1258     //     for _ in 0..times {
1259     //         if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
1260     //             return Some(r);
1261     //         }
1262     //     }
1263 
1264     //     return None;
1265     // }
1266 
1267     // pub fn virtual_runtime(&self) -> isize {
1268     //     return self.virtual_runtime.load(Ordering::SeqCst);
1269     // }
1270 
1271     // pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
1272     //     self.virtual_runtime
1273     //         .store(virtual_runtime, Ordering::SeqCst);
1274     // }
1275     // pub fn increase_virtual_runtime(&self, delta: isize) {
1276     //     self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
1277     // }
1278 
1279     // pub fn rt_time_slice(&self) -> isize {
1280     //     return self.rt_time_slice.load(Ordering::SeqCst);
1281     // }
1282 
1283     // pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
1284     //     self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
1285     // }
1286 
1287     // pub fn increase_rt_time_slice(&self, delta: isize) {
1288     //     self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
1289     // }
1290 
1291     pub fn policy(&self) -> crate::sched::SchedPolicy {
1292         return *self.sched_policy.read_irqsave();
1293     }
1294 }
1295 
1296 #[derive(Debug, Clone)]
1297 pub struct KernelStack {
1298     stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
1299     /// 标记该内核栈是否可以被释放
1300     can_be_freed: bool,
1301 }
1302 
1303 impl KernelStack {
1304     pub const SIZE: usize = 0x4000;
1305     pub const ALIGN: usize = 0x4000;
1306 
1307     pub fn new() -> Result<Self, SystemError> {
1308         return Ok(Self {
1309             stack: Some(
1310                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
1311             ),
1312             can_be_freed: true,
1313         });
1314     }
1315 
1316     /// 根据已有的空间,构造一个内核栈结构体
1317     ///
1318     /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
1319     pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
1320         if base.is_null() || !base.check_aligned(Self::ALIGN) {
1321             return Err(SystemError::EFAULT);
1322         }
1323 
1324         return Ok(Self {
1325             stack: Some(
1326                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
1327                     base.data() as *mut [u8; KernelStack::SIZE],
1328                 ),
1329             ),
1330             can_be_freed: false,
1331         });
1332     }
1333 
1334     /// 返回内核栈的起始虚拟地址(低地址)
1335     pub fn start_address(&self) -> VirtAddr {
1336         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
1337     }
1338 
1339     /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
1340     pub fn stack_max_address(&self) -> VirtAddr {
1341         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
1342     }
1343 
1344     pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
1345         // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
1346         let p: *const ProcessControlBlock = Weak::into_raw(pcb);
1347         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1348 
1349         // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
1350         if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
1351             kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
1352             return Err(SystemError::EPERM);
1353         }
1354         // 将pcb的地址放到内核栈的最低地址处
1355         unsafe {
1356             *stack_bottom_ptr = p;
1357         }
1358 
1359         return Ok(());
1360     }
1361 
1362     /// 清除内核栈的pcb指针
1363     ///
1364     /// ## 参数
1365     ///
1366     /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
1367     pub unsafe fn clear_pcb(&mut self, force: bool) {
1368         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1369         if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
1370             return;
1371         }
1372 
1373         if !force {
1374             let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
1375             drop(pcb_ptr);
1376         }
1377 
1378         *stack_bottom_ptr = core::ptr::null();
1379     }
1380 
1381     /// 返回指向当前内核栈pcb的Arc指针
1382     #[allow(dead_code)]
1383     pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
1384         // 从内核栈的最低地址处取出pcb的地址
1385         let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1386         if unlikely(unsafe { (*p).is_null() }) {
1387             return None;
1388         }
1389 
1390         // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
1391         let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
1392             ManuallyDrop::new(Weak::from_raw(*p));
1393 
1394         let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
1395         return Some(new_arc);
1396     }
1397 }
1398 
1399 impl Drop for KernelStack {
1400     fn drop(&mut self) {
1401         if self.stack.is_some() {
1402             let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1403             if unsafe { !(*ptr).is_null() } {
1404                 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
1405                 drop(pcb_ptr);
1406             }
1407         }
1408         // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
1409         if !self.can_be_freed {
1410             let bx = self.stack.take();
1411             core::mem::forget(bx);
1412         }
1413     }
1414 }
1415 
1416 pub fn process_init() {
1417     ProcessManager::init();
1418 }
1419 
1420 #[derive(Debug)]
1421 pub struct ProcessSignalInfo {
1422     // 当前进程
1423     sig_block: SigSet,
1424     // sig_pending 中存储当前线程要处理的信号
1425     sig_pending: SigPending,
1426     // sig_shared_pending 中存储当前线程所属进程要处理的信号
1427     sig_shared_pending: SigPending,
1428     // 当前进程对应的tty
1429     tty: Option<Arc<TtyCore>>,
1430 }
1431 
1432 impl ProcessSignalInfo {
1433     pub fn sig_block(&self) -> &SigSet {
1434         &self.sig_block
1435     }
1436 
1437     pub fn sig_pending(&self) -> &SigPending {
1438         &self.sig_pending
1439     }
1440 
1441     pub fn sig_pending_mut(&mut self) -> &mut SigPending {
1442         &mut self.sig_pending
1443     }
1444 
1445     pub fn sig_block_mut(&mut self) -> &mut SigSet {
1446         &mut self.sig_block
1447     }
1448 
1449     pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
1450         &mut self.sig_shared_pending
1451     }
1452 
1453     pub fn sig_shared_pending(&self) -> &SigPending {
1454         &self.sig_shared_pending
1455     }
1456 
1457     pub fn tty(&self) -> Option<Arc<TtyCore>> {
1458         self.tty.clone()
1459     }
1460 
1461     pub fn set_tty(&mut self, tty: Arc<TtyCore>) {
1462         self.tty = Some(tty);
1463     }
1464 
1465     /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
1466     ///
1467     /// ## 参数
1468     ///
1469     /// - `sig_mask` 被忽略掉的信号
1470     ///
1471     pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
1472         let res = self.sig_pending.dequeue_signal(sig_mask);
1473         if res.0 != Signal::INVALID {
1474             return res;
1475         } else {
1476             return self.sig_shared_pending.dequeue_signal(sig_mask);
1477         }
1478     }
1479 }
1480 
1481 impl Default for ProcessSignalInfo {
1482     fn default() -> Self {
1483         Self {
1484             sig_block: SigSet::empty(),
1485             sig_pending: SigPending::default(),
1486             sig_shared_pending: SigPending::default(),
1487             tty: None,
1488         }
1489     }
1490 }
1491