xref: /drstd/src/std/io/cursor.rs (revision 9670759b785600bf6315e4173e46a602f16add7a)
1 #[cfg(test)]
2 mod tests;
3 
4 use crate::std::io::prelude::*;
5 
6 use crate::std::cmp;
7 use crate::std::io::{self, BorrowedCursor, ErrorKind, IoSlice, IoSliceMut, SeekFrom};
8 use core::alloc::Allocator;
9 
10 /// A `Cursor` wraps an in-memory buffer and provides it with a
11 /// [`Seek`] implementation.
12 ///
13 /// `Cursor`s are used with in-memory buffers, anything implementing
14 /// <code>[AsRef]<\[u8]></code>, to allow them to implement [`Read`] and/or [`Write`],
15 /// allowing these buffers to be used anywhere you might use a reader or writer
16 /// that does actual I/O.
17 ///
18 /// The standard library implements some I/O traits on various types which
19 /// are commonly used as a buffer, like <code>Cursor<[Vec]\<u8>></code> and
20 /// <code>Cursor<[&\[u8\]][bytes]></code>.
21 ///
22 /// # Examples
23 ///
24 /// We may want to write bytes to a [`File`] in our production
25 /// code, but use an in-memory buffer in our tests. We can do this with
26 /// `Cursor`:
27 ///
28 /// [bytes]: crate::std::slice "slice"
29 /// [`File`]: crate::std::fs::File
30 ///
31 /// ```no_run
32 /// use std::io::prelude::*;
33 /// use std::io::{self, SeekFrom};
34 /// use std::fs::File;
35 ///
36 /// // a library function we've written
37 /// fn write_ten_bytes_at_end<W: Write + Seek>(mut writer: W) -> io::Result<()> {
38 ///     writer.seek(SeekFrom::End(-10))?;
39 ///
40 ///     for i in 0..10 {
41 ///         writer.write(&[i])?;
42 ///     }
43 ///
44 ///     // all went well
45 ///     Ok(())
46 /// }
47 ///
48 /// # fn foo() -> io::Result<()> {
49 /// // Here's some code that uses this library function.
50 /// //
51 /// // We might want to use a BufReader here for efficiency, but let's
52 /// // keep this example focused.
53 /// let mut file = File::create("foo.txt")?;
54 ///
55 /// write_ten_bytes_at_end(&mut file)?;
56 /// # Ok(())
57 /// # }
58 ///
59 /// // now let's write a test
60 /// #[test]
61 /// fn test_writes_bytes() {
62 ///     // setting up a real File is much slower than an in-memory buffer,
63 ///     // let's use a cursor instead
64 ///     use std::io::Cursor;
65 ///     let mut buff = Cursor::new(vec![0; 15]);
66 ///
67 ///     write_ten_bytes_at_end(&mut buff).unwrap();
68 ///
69 ///     assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
70 /// }
71 /// ```
72 #[derive(Debug, Default, Eq, PartialEq)]
73 pub struct Cursor<T> {
74     inner: T,
75     pos: u64,
76 }
77 
78 impl<T> Cursor<T> {
79     /// Creates a new cursor wrapping the provided underlying in-memory buffer.
80     ///
81     /// Cursor initial position is `0` even if underlying buffer (e.g., [`Vec`])
82     /// is not empty. So writing to cursor starts with overwriting [`Vec`]
83     /// content, not with appending to it.
84     ///
85     /// # Examples
86     ///
87     /// ```
88     /// use std::io::Cursor;
89     ///
90     /// let buff = Cursor::new(Vec::new());
91     /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
92     /// # force_inference(&buff);
93     /// ```
new(inner: T) -> Cursor<T>94     pub const fn new(inner: T) -> Cursor<T> {
95         Cursor { pos: 0, inner }
96     }
97 
98     /// Consumes this cursor, returning the underlying value.
99     ///
100     /// # Examples
101     ///
102     /// ```
103     /// use std::io::Cursor;
104     ///
105     /// let buff = Cursor::new(Vec::new());
106     /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
107     /// # force_inference(&buff);
108     ///
109     /// let vec = buff.into_inner();
110     /// ```
into_inner(self) -> T111     pub fn into_inner(self) -> T {
112         self.inner
113     }
114 
115     /// Gets a reference to the underlying value in this cursor.
116     ///
117     /// # Examples
118     ///
119     /// ```
120     /// use std::io::Cursor;
121     ///
122     /// let buff = Cursor::new(Vec::new());
123     /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
124     /// # force_inference(&buff);
125     ///
126     /// let reference = buff.get_ref();
127     /// ```
get_ref(&self) -> &T128     pub const fn get_ref(&self) -> &T {
129         &self.inner
130     }
131 
132     /// Gets a mutable reference to the underlying value in this cursor.
133     ///
134     /// Care should be taken to avoid modifying the internal I/O state of the
135     /// underlying value as it may corrupt this cursor's position.
136     ///
137     /// # Examples
138     ///
139     /// ```
140     /// use std::io::Cursor;
141     ///
142     /// let mut buff = Cursor::new(Vec::new());
143     /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
144     /// # force_inference(&buff);
145     ///
146     /// let reference = buff.get_mut();
147     /// ```
get_mut(&mut self) -> &mut T148     pub fn get_mut(&mut self) -> &mut T {
149         &mut self.inner
150     }
151 
152     /// Returns the current position of this cursor.
153     ///
154     /// # Examples
155     ///
156     /// ```
157     /// use std::io::Cursor;
158     /// use std::io::prelude::*;
159     /// use std::io::SeekFrom;
160     ///
161     /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
162     ///
163     /// assert_eq!(buff.position(), 0);
164     ///
165     /// buff.seek(SeekFrom::Current(2)).unwrap();
166     /// assert_eq!(buff.position(), 2);
167     ///
168     /// buff.seek(SeekFrom::Current(-1)).unwrap();
169     /// assert_eq!(buff.position(), 1);
170     /// ```
position(&self) -> u64171     pub const fn position(&self) -> u64 {
172         self.pos
173     }
174 
175     /// Sets the position of this cursor.
176     ///
177     /// # Examples
178     ///
179     /// ```
180     /// use std::io::Cursor;
181     ///
182     /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
183     ///
184     /// assert_eq!(buff.position(), 0);
185     ///
186     /// buff.set_position(2);
187     /// assert_eq!(buff.position(), 2);
188     ///
189     /// buff.set_position(4);
190     /// assert_eq!(buff.position(), 4);
191     /// ```
set_position(&mut self, pos: u64)192     pub fn set_position(&mut self, pos: u64) {
193         self.pos = pos;
194     }
195 }
196 
197 impl<T> Cursor<T>
198 where
199     T: AsRef<[u8]>,
200 {
201     /// Returns the remaining slice.
202     ///
203     /// # Examples
204     ///
205     /// ```
206     /// #![feature(cursor_remaining)]
207     /// use std::io::Cursor;
208     ///
209     /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
210     ///
211     /// assert_eq!(buff.remaining_slice(), &[1, 2, 3, 4, 5]);
212     ///
213     /// buff.set_position(2);
214     /// assert_eq!(buff.remaining_slice(), &[3, 4, 5]);
215     ///
216     /// buff.set_position(4);
217     /// assert_eq!(buff.remaining_slice(), &[5]);
218     ///
219     /// buff.set_position(6);
220     /// assert_eq!(buff.remaining_slice(), &[]);
221     /// ```
remaining_slice(&self) -> &[u8]222     pub fn remaining_slice(&self) -> &[u8] {
223         let len = self.pos.min(self.inner.as_ref().len() as u64);
224         &self.inner.as_ref()[(len as usize)..]
225     }
226 
227     /// Returns `true` if the remaining slice is empty.
228     ///
229     /// # Examples
230     ///
231     /// ```
232     /// #![feature(cursor_remaining)]
233     /// use std::io::Cursor;
234     ///
235     /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
236     ///
237     /// buff.set_position(2);
238     /// assert!(!buff.is_empty());
239     ///
240     /// buff.set_position(5);
241     /// assert!(buff.is_empty());
242     ///
243     /// buff.set_position(10);
244     /// assert!(buff.is_empty());
245     /// ```
is_empty(&self) -> bool246     pub fn is_empty(&self) -> bool {
247         self.pos >= self.inner.as_ref().len() as u64
248     }
249 }
250 
251 impl<T> Clone for Cursor<T>
252 where
253     T: Clone,
254 {
255     #[inline]
clone(&self) -> Self256     fn clone(&self) -> Self {
257         Cursor {
258             inner: self.inner.clone(),
259             pos: self.pos,
260         }
261     }
262 
263     #[inline]
clone_from(&mut self, other: &Self)264     fn clone_from(&mut self, other: &Self) {
265         self.inner.clone_from(&other.inner);
266         self.pos = other.pos;
267     }
268 }
269 
270 impl<T> io::Seek for Cursor<T>
271 where
272     T: AsRef<[u8]>,
273 {
seek(&mut self, style: SeekFrom) -> io::Result<u64>274     fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
275         let (base_pos, offset) = match style {
276             SeekFrom::Start(n) => {
277                 self.pos = n;
278                 return Ok(n);
279             }
280             SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
281             SeekFrom::Current(n) => (self.pos, n),
282         };
283         match base_pos.checked_add_signed(offset) {
284             Some(n) => {
285                 self.pos = n;
286                 Ok(self.pos)
287             }
288             None => Err(io::const_io_error!(
289                 ErrorKind::InvalidInput,
290                 "invalid seek to a negative or overflowing position",
291             )),
292         }
293     }
294 
stream_len(&mut self) -> io::Result<u64>295     fn stream_len(&mut self) -> io::Result<u64> {
296         Ok(self.inner.as_ref().len() as u64)
297     }
298 
stream_position(&mut self) -> io::Result<u64>299     fn stream_position(&mut self) -> io::Result<u64> {
300         Ok(self.pos)
301     }
302 }
303 
304 impl<T> Read for Cursor<T>
305 where
306     T: AsRef<[u8]>,
307 {
read(&mut self, buf: &mut [u8]) -> io::Result<usize>308     fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
309         let n = Read::read(&mut self.remaining_slice(), buf)?;
310         self.pos += n as u64;
311         Ok(n)
312     }
313 
read_buf(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()>314     fn read_buf(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
315         let prev_written = cursor.written();
316 
317         Read::read_buf(&mut self.fill_buf()?, cursor.reborrow())?;
318 
319         self.pos += (cursor.written() - prev_written) as u64;
320 
321         Ok(())
322     }
323 
read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize>324     fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
325         let mut nread = 0;
326         for buf in bufs {
327             let n = self.read(buf)?;
328             nread += n;
329             if n < buf.len() {
330                 break;
331             }
332         }
333         Ok(nread)
334     }
335 
is_read_vectored(&self) -> bool336     fn is_read_vectored(&self) -> bool {
337         true
338     }
339 
read_exact(&mut self, buf: &mut [u8]) -> io::Result<()>340     fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
341         let n = buf.len();
342         Read::read_exact(&mut self.remaining_slice(), buf)?;
343         self.pos += n as u64;
344         Ok(())
345     }
346 }
347 
348 impl<T> BufRead for Cursor<T>
349 where
350     T: AsRef<[u8]>,
351 {
fill_buf(&mut self) -> io::Result<&[u8]>352     fn fill_buf(&mut self) -> io::Result<&[u8]> {
353         Ok(self.remaining_slice())
354     }
consume(&mut self, amt: usize)355     fn consume(&mut self, amt: usize) {
356         self.pos += amt as u64;
357     }
358 }
359 
360 // Non-resizing write implementation
361 #[inline]
slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize>362 fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
363     let pos = cmp::min(*pos_mut, slice.len() as u64);
364     let amt = (&mut slice[(pos as usize)..]).write(buf)?;
365     *pos_mut += amt as u64;
366     Ok(amt)
367 }
368 
369 #[inline]
slice_write_vectored( pos_mut: &mut u64, slice: &mut [u8], bufs: &[IoSlice<'_>], ) -> io::Result<usize>370 fn slice_write_vectored(
371     pos_mut: &mut u64,
372     slice: &mut [u8],
373     bufs: &[IoSlice<'_>],
374 ) -> io::Result<usize> {
375     let mut nwritten = 0;
376     for buf in bufs {
377         let n = slice_write(pos_mut, slice, buf)?;
378         nwritten += n;
379         if n < buf.len() {
380             break;
381         }
382     }
383     Ok(nwritten)
384 }
385 
386 /// Reserves the required space, and pads the vec with 0s if necessary.
reserve_and_pad<A: Allocator>( pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf_len: usize, ) -> io::Result<usize>387 fn reserve_and_pad<A: Allocator>(
388     pos_mut: &mut u64,
389     vec: &mut Vec<u8, A>,
390     buf_len: usize,
391 ) -> io::Result<usize> {
392     let pos: usize = (*pos_mut).try_into().map_err(|_| {
393         io::const_io_error!(
394             ErrorKind::InvalidInput,
395             "cursor position exceeds maximum possible vector length",
396         )
397     })?;
398 
399     // For safety reasons, we don't want these numbers to overflow
400     // otherwise our allocation won't be enough
401     let desired_cap = pos.saturating_add(buf_len);
402     if desired_cap > vec.capacity() {
403         // We want our vec's total capacity
404         // to have room for (pos+buf_len) bytes. Reserve allocates
405         // based on additional elements from the length, so we need to
406         // reserve the difference
407         vec.reserve(desired_cap - vec.len());
408     }
409     // Pad if pos is above the current len.
410     if pos > vec.len() {
411         let diff = pos - vec.len();
412         // Unfortunately, `resize()` would suffice but the optimiser does not
413         // realise the `reserve` it does can be eliminated. So we do it manually
414         // to eliminate that extra branch
415         let spare = vec.spare_capacity_mut();
416         debug_assert!(spare.len() >= diff);
417         // Safety: we have allocated enough capacity for this.
418         // And we are only writing, not reading
419         unsafe {
420             spare
421                 .get_unchecked_mut(..diff)
422                 .fill(core::mem::MaybeUninit::new(0));
423             vec.set_len(pos);
424         }
425     }
426 
427     Ok(pos)
428 }
429 
430 /// Writes the slice to the vec without allocating
431 /// # Safety: vec must have buf.len() spare capacity
vec_write_unchecked<A>(pos: usize, vec: &mut Vec<u8, A>, buf: &[u8]) -> usize where A: Allocator,432 unsafe fn vec_write_unchecked<A>(pos: usize, vec: &mut Vec<u8, A>, buf: &[u8]) -> usize
433 where
434     A: Allocator,
435 {
436     debug_assert!(vec.capacity() >= pos + buf.len());
437     vec.as_mut_ptr().add(pos).copy_from(buf.as_ptr(), buf.len());
438     pos + buf.len()
439 }
440 
441 /// Resizing write implementation for [`Cursor`]
442 ///
443 /// Cursor is allowed to have a pre-allocated and initialised
444 /// vector body, but with a position of 0. This means the [`Write`]
445 /// will overwrite the contents of the vec.
446 ///
447 /// This also allows for the vec body to be empty, but with a position of N.
448 /// This means that [`Write`] will pad the vec with 0 initially,
449 /// before writing anything from that point
vec_write<A>(pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf: &[u8]) -> io::Result<usize> where A: Allocator,450 fn vec_write<A>(pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf: &[u8]) -> io::Result<usize>
451 where
452     A: Allocator,
453 {
454     let buf_len = buf.len();
455     let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
456 
457     // Write the buf then progress the vec forward if necessary
458     // Safety: we have ensured that the capacity is available
459     // and that all bytes get written up to pos
460     unsafe {
461         pos = vec_write_unchecked(pos, vec, buf);
462         if pos > vec.len() {
463             vec.set_len(pos);
464         }
465     };
466 
467     // Bump us forward
468     *pos_mut += buf_len as u64;
469     Ok(buf_len)
470 }
471 
472 /// Resizing write_vectored implementation for [`Cursor`]
473 ///
474 /// Cursor is allowed to have a pre-allocated and initialised
475 /// vector body, but with a position of 0. This means the [`Write`]
476 /// will overwrite the contents of the vec.
477 ///
478 /// This also allows for the vec body to be empty, but with a position of N.
479 /// This means that [`Write`] will pad the vec with 0 initially,
480 /// before writing anything from that point
vec_write_vectored<A>( pos_mut: &mut u64, vec: &mut Vec<u8, A>, bufs: &[IoSlice<'_>], ) -> io::Result<usize> where A: Allocator,481 fn vec_write_vectored<A>(
482     pos_mut: &mut u64,
483     vec: &mut Vec<u8, A>,
484     bufs: &[IoSlice<'_>],
485 ) -> io::Result<usize>
486 where
487     A: Allocator,
488 {
489     // For safety reasons, we don't want this sum to overflow ever.
490     // If this saturates, the reserve should panic to avoid any unsound writing.
491     let buf_len = bufs.iter().fold(0usize, |a, b| a.saturating_add(b.len()));
492     let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
493 
494     // Write the buf then progress the vec forward if necessary
495     // Safety: we have ensured that the capacity is available
496     // and that all bytes get written up to the last pos
497     unsafe {
498         for buf in bufs {
499             pos = vec_write_unchecked(pos, vec, buf);
500         }
501         if pos > vec.len() {
502             vec.set_len(pos);
503         }
504     }
505 
506     // Bump us forward
507     *pos_mut += buf_len as u64;
508     Ok(buf_len)
509 }
510 
511 impl Write for Cursor<&mut [u8]> {
512     #[inline]
write(&mut self, buf: &[u8]) -> io::Result<usize>513     fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
514         slice_write(&mut self.pos, self.inner, buf)
515     }
516 
517     #[inline]
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>518     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
519         slice_write_vectored(&mut self.pos, self.inner, bufs)
520     }
521 
522     #[inline]
is_write_vectored(&self) -> bool523     fn is_write_vectored(&self) -> bool {
524         true
525     }
526 
527     #[inline]
flush(&mut self) -> io::Result<()>528     fn flush(&mut self) -> io::Result<()> {
529         Ok(())
530     }
531 }
532 
533 impl<A> Write for Cursor<&mut Vec<u8, A>>
534 where
535     A: Allocator,
536 {
write(&mut self, buf: &[u8]) -> io::Result<usize>537     fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
538         vec_write(&mut self.pos, self.inner, buf)
539     }
540 
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>541     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
542         vec_write_vectored(&mut self.pos, self.inner, bufs)
543     }
544 
545     #[inline]
is_write_vectored(&self) -> bool546     fn is_write_vectored(&self) -> bool {
547         true
548     }
549 
550     #[inline]
flush(&mut self) -> io::Result<()>551     fn flush(&mut self) -> io::Result<()> {
552         Ok(())
553     }
554 }
555 
556 impl<A> Write for Cursor<Vec<u8, A>>
557 where
558     A: Allocator,
559 {
write(&mut self, buf: &[u8]) -> io::Result<usize>560     fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
561         vec_write(&mut self.pos, &mut self.inner, buf)
562     }
563 
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>564     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
565         vec_write_vectored(&mut self.pos, &mut self.inner, bufs)
566     }
567 
568     #[inline]
is_write_vectored(&self) -> bool569     fn is_write_vectored(&self) -> bool {
570         true
571     }
572 
573     #[inline]
flush(&mut self) -> io::Result<()>574     fn flush(&mut self) -> io::Result<()> {
575         Ok(())
576     }
577 }
578 
579 impl<A> Write for Cursor<Box<[u8], A>>
580 where
581     A: Allocator,
582 {
583     #[inline]
write(&mut self, buf: &[u8]) -> io::Result<usize>584     fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
585         slice_write(&mut self.pos, &mut self.inner, buf)
586     }
587 
588     #[inline]
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>589     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
590         slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
591     }
592 
593     #[inline]
is_write_vectored(&self) -> bool594     fn is_write_vectored(&self) -> bool {
595         true
596     }
597 
598     #[inline]
flush(&mut self) -> io::Result<()>599     fn flush(&mut self) -> io::Result<()> {
600         Ok(())
601     }
602 }
603 
604 impl<const N: usize> Write for Cursor<[u8; N]> {
605     #[inline]
write(&mut self, buf: &[u8]) -> io::Result<usize>606     fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
607         slice_write(&mut self.pos, &mut self.inner, buf)
608     }
609 
610     #[inline]
write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>611     fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
612         slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
613     }
614 
615     #[inline]
is_write_vectored(&self) -> bool616     fn is_write_vectored(&self) -> bool {
617         true
618     }
619 
620     #[inline]
flush(&mut self) -> io::Result<()>621     fn flush(&mut self) -> io::Result<()> {
622         Ok(())
623     }
624 }
625