xref: /relibc/core_io/src/b9adc3327ec7d2820ab2db8bb3cc2a0196a8375d/mod.rs (revision 0c2cecccc7e6a46cdf0179c3ed05eeccc2d2a9a4)
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10 
11 //! Traits, helpers, and type definitions for core I/O functionality.
12 //!
13 //! The `std::io` module contains a number of common things you'll need
14 //! when doing input and output. The most core part of this module is
15 //! the [`Read`] and [`Write`] traits, which provide the
16 //! most general interface for reading and writing input and output.
17 //!
18 //! # Read and Write
19 //!
20 //! Because they are traits, [`Read`] and [`Write`] are implemented by a number
21 //! of other types, and you can implement them for your types too. As such,
22 //! you'll see a few different types of I/O throughout the documentation in
23 //! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
24 //! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
25 //! [`File`]s:
26 //!
27 //! ```no_run
28 //! use std::io;
29 //! use std::io::prelude::*;
30 //! use std::fs::File;
31 //!
32 //! fn main() -> io::Result<()> {
33 //!     let mut f = File::open("foo.txt")?;
34 //!     let mut buffer = [0; 10];
35 //!
36 //!     // read up to 10 bytes
37 //!     f.read(&mut buffer)?;
38 //!
39 //!     println!("The bytes: {:?}", buffer);
40 //!     Ok(())
41 //! }
42 //! ```
43 //!
44 //! [`Read`] and [`Write`] are so important, implementors of the two traits have a
45 //! nickname: readers and writers. So you'll sometimes see 'a reader' instead
46 //! of 'a type that implements the [`Read`] trait'. Much easier!
47 //!
48 //! ## Seek and BufRead
49 //!
50 //! Beyond that, there are two important traits that are provided: [`Seek`]
51 //! and [`BufRead`]. Both of these build on top of a reader to control
52 //! how the reading happens. [`Seek`] lets you control where the next byte is
53 //! coming from:
54 //!
55 //! ```no_run
56 //! use std::io;
57 //! use std::io::prelude::*;
58 //! use std::io::SeekFrom;
59 //! use std::fs::File;
60 //!
61 //! fn main() -> io::Result<()> {
62 //!     let mut f = File::open("foo.txt")?;
63 //!     let mut buffer = [0; 10];
64 //!
65 //!     // skip to the last 10 bytes of the file
66 //!     f.seek(SeekFrom::End(-10))?;
67 //!
68 //!     // read up to 10 bytes
69 //!     f.read(&mut buffer)?;
70 //!
71 //!     println!("The bytes: {:?}", buffer);
72 //!     Ok(())
73 //! }
74 //! ```
75 //!
76 //! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
77 //! to show it off, we'll need to talk about buffers in general. Keep reading!
78 //!
79 //! ## BufReader and BufWriter
80 //!
81 //! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
82 //! making near-constant calls to the operating system. To help with this,
83 //! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
84 //! readers and writers. The wrapper uses a buffer, reducing the number of
85 //! calls and providing nicer methods for accessing exactly what you want.
86 //!
87 //! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
88 //! methods to any reader:
89 //!
90 //! ```no_run
91 //! use std::io;
92 //! use std::io::prelude::*;
93 //! use std::io::BufReader;
94 //! use std::fs::File;
95 //!
96 //! fn main() -> io::Result<()> {
97 //!     let f = File::open("foo.txt")?;
98 //!     let mut reader = BufReader::new(f);
99 //!     let mut buffer = String::new();
100 //!
101 //!     // read a line into buffer
102 //!     reader.read_line(&mut buffer)?;
103 //!
104 //!     println!("{}", buffer);
105 //!     Ok(())
106 //! }
107 //! ```
108 //!
109 //! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
110 //! to [`write`][`Write::write`]:
111 //!
112 //! ```no_run
113 //! use std::io;
114 //! use std::io::prelude::*;
115 //! use std::io::BufWriter;
116 //! use std::fs::File;
117 //!
118 //! fn main() -> io::Result<()> {
119 //!     let f = File::create("foo.txt")?;
120 //!     {
121 //!         let mut writer = BufWriter::new(f);
122 //!
123 //!         // write a byte to the buffer
124 //!         writer.write(&[42])?;
125 //!
126 //!     } // the buffer is flushed once writer goes out of scope
127 //!
128 //!     Ok(())
129 //! }
130 //! ```
131 //!
132 //! ## Standard input and output
133 //!
134 //! A very common source of input is standard input:
135 //!
136 //! ```no_run
137 //! use std::io;
138 //!
139 //! fn main() -> io::Result<()> {
140 //!     let mut input = String::new();
141 //!
142 //!     io::stdin().read_line(&mut input)?;
143 //!
144 //!     println!("You typed: {}", input.trim());
145 //!     Ok(())
146 //! }
147 //! ```
148 //!
149 //! Note that you cannot use the [`?` operator] in functions that do not return
150 //! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
151 //! or `match` on the return value to catch any possible errors:
152 //!
153 //! ```no_run
154 //! use std::io;
155 //!
156 //! let mut input = String::new();
157 //!
158 //! io::stdin().read_line(&mut input).unwrap();
159 //! ```
160 //!
161 //! And a very common source of output is standard output:
162 //!
163 //! ```no_run
164 //! use std::io;
165 //! use std::io::prelude::*;
166 //!
167 //! fn main() -> io::Result<()> {
168 //!     io::stdout().write(&[42])?;
169 //!     Ok(())
170 //! }
171 //! ```
172 //!
173 //! Of course, using [`io::stdout`] directly is less common than something like
174 //! [`println!`].
175 //!
176 //! ## Iterator types
177 //!
178 //! A large number of the structures provided by `std::io` are for various
179 //! ways of iterating over I/O. For example, [`Lines`] is used to split over
180 //! lines:
181 //!
182 //! ```no_run
183 //! use std::io;
184 //! use std::io::prelude::*;
185 //! use std::io::BufReader;
186 //! use std::fs::File;
187 //!
188 //! fn main() -> io::Result<()> {
189 //!     let f = File::open("foo.txt")?;
190 //!     let reader = BufReader::new(f);
191 //!
192 //!     for line in reader.lines() {
193 //!         println!("{}", line?);
194 //!     }
195 //!     Ok(())
196 //! }
197 //! ```
198 //!
199 //! ## Functions
200 //!
201 //! There are a number of [functions][functions-list] that offer access to various
202 //! features. For example, we can use three of these functions to copy everything
203 //! from standard input to standard output:
204 //!
205 //! ```no_run
206 //! use std::io;
207 //!
208 //! fn main() -> io::Result<()> {
209 //!     io::copy(&mut io::stdin(), &mut io::stdout())?;
210 //!     Ok(())
211 //! }
212 //! ```
213 //!
214 //! [functions-list]: #functions-1
215 //!
216 //! ## io::Result
217 //!
218 //! Last, but certainly not least, is [`io::Result`]. This type is used
219 //! as the return type of many `std::io` functions that can cause an error, and
220 //! can be returned from your own functions as well. Many of the examples in this
221 //! module use the [`?` operator]:
222 //!
223 //! ```
224 //! use std::io;
225 //!
226 //! fn read_input() -> io::Result<()> {
227 //!     let mut input = String::new();
228 //!
229 //!     io::stdin().read_line(&mut input)?;
230 //!
231 //!     println!("You typed: {}", input.trim());
232 //!
233 //!     Ok(())
234 //! }
235 //! ```
236 //!
237 //! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
238 //! common type for functions which don't have a 'real' return value, but do want to
239 //! return errors if they happen. In this case, the only purpose of this function is
240 //! to read the line and print it, so we use `()`.
241 //!
242 //! ## Platform-specific behavior
243 //!
244 //! Many I/O functions throughout the standard library are documented to indicate
245 //! what various library or syscalls they are delegated to. This is done to help
246 //! applications both understand what's happening under the hood as well as investigate
247 //! any possibly unclear semantics. Note, however, that this is informative, not a binding
248 //! contract. The implementation of many of these functions are subject to change over
249 //! time and may call fewer or more syscalls/library functions.
250 //!
251 //! [`Read`]: trait.Read.html
252 //! [`Write`]: trait.Write.html
253 //! [`Seek`]: trait.Seek.html
254 //! [`BufRead`]: trait.BufRead.html
255 //! [`File`]: ../fs/struct.File.html
256 //! [`TcpStream`]: ../net/struct.TcpStream.html
257 //! [`Vec<T>`]: ../vec/struct.Vec.html
258 //! [`BufReader`]: struct.BufReader.html
259 //! [`BufWriter`]: struct.BufWriter.html
260 //! [`Write::write`]: trait.Write.html#tymethod.write
261 //! [`io::stdout`]: fn.stdout.html
262 //! [`println!`]: ../macro.println.html
263 //! [`Lines`]: struct.Lines.html
264 //! [`io::Result`]: type.Result.html
265 //! [`?` operator]: ../../book/first-edition/syntax-index.html
266 //! [`Read::read`]: trait.Read.html#tymethod.read
267 //! [`Result`]: ../result/enum.Result.html
268 //! [`.unwrap()`]: ../result/enum.Result.html#method.unwrap
269 
270 #[cfg(feature="alloc")]
271 use alloc::string::String;
272 #[cfg(feature="alloc")]
273 use alloc::vec::Vec;
274 use core::cmp;
275 use core::fmt;
276 use core::str;
277 #[cfg(feature="alloc")]
278 use core::slice::memchr;
279 use core::ptr;
280 
281 #[cfg(feature="alloc")]
282 pub use self::buffered::{BufReader, BufWriter, LineWriter};
283 #[cfg(feature="alloc")]
284 pub use self::buffered::IntoInnerError;
285 pub use self::cursor::Cursor;
286 pub use self::error::{Result, Error, ErrorKind};
287 pub use self::util::{copy, sink, Sink, empty, Empty, repeat, Repeat};
288 
289 pub mod prelude;
290 #[cfg(feature="alloc")]
291 mod buffered;
292 mod cursor;
293 mod error;
294 mod impls;
295 mod util;
296 
297 const DEFAULT_BUF_SIZE: usize = 8 * 1024;
298 
299 #[cfg(feature="alloc")]
300 struct Guard<'a> { buf: &'a mut Vec<u8>, len: usize }
301 
302 #[cfg(feature="alloc")]
303 impl<'a> Drop for Guard<'a> {
304     fn drop(&mut self) {
305         unsafe { self.buf.set_len(self.len); }
306     }
307 }
308 
309 // A few methods below (read_to_string, read_line) will append data into a
310 // `String` buffer, but we need to be pretty careful when doing this. The
311 // implementation will just call `.as_mut_vec()` and then delegate to a
312 // byte-oriented reading method, but we must ensure that when returning we never
313 // leave `buf` in a state such that it contains invalid UTF-8 in its bounds.
314 //
315 // To this end, we use an RAII guard (to protect against panics) which updates
316 // the length of the string when it is dropped. This guard initially truncates
317 // the string to the prior length and only after we've validated that the
318 // new contents are valid UTF-8 do we allow it to set a longer length.
319 //
320 // The unsafety in this function is twofold:
321 //
322 // 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
323 //    checks.
324 // 2. We're passing a raw buffer to the function `f`, and it is expected that
325 //    the function only *appends* bytes to the buffer. We'll get undefined
326 //    behavior if existing bytes are overwritten to have non-UTF-8 data.
327 #[cfg(feature="alloc")]
328 fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
329     where F: FnOnce(&mut Vec<u8>) -> Result<usize>
330 {
331     unsafe {
332         let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
333         let ret = f(g.buf);
334         if str::from_utf8(&g.buf[g.len..]).is_err() {
335             ret.and_then(|_| {
336                 Err(Error::new(ErrorKind::InvalidData,
337                                "stream did not contain valid UTF-8"))
338             })
339         } else {
340             g.len = g.buf.len();
341             ret
342         }
343     }
344 }
345 
346 // This uses an adaptive system to extend the vector when it fills. We want to
347 // avoid paying to allocate and zero a huge chunk of memory if the reader only
348 // has 4 bytes while still making large reads if the reader does have a ton
349 // of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
350 // time is 4,500 times (!) slower than a default reservation size of 32 if the
351 // reader has a very small amount of data to return.
352 //
353 // Because we're extending the buffer with uninitialized data for trusted
354 // readers, we need to make sure to truncate that if any of this panics.
355 #[cfg(feature="alloc")]
356 fn read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
357     read_to_end_with_reservation(r, buf, 32)
358 }
359 
360 #[cfg(feature="alloc")]
361 fn read_to_end_with_reservation<R: Read + ?Sized>(r: &mut R,
362                                                   buf: &mut Vec<u8>,
363                                                   reservation_size: usize) -> Result<usize>
364 {
365     let start_len = buf.len();
366     let mut g = Guard { len: buf.len(), buf: buf };
367     let ret;
368     loop {
369         if g.len == g.buf.len() {
370             unsafe {
371                 g.buf.reserve(reservation_size);
372                 let capacity = g.buf.capacity();
373                 g.buf.set_len(capacity);
374                 r.initializer().initialize(&mut g.buf[g.len..]);
375             }
376         }
377 
378         match r.read(&mut g.buf[g.len..]) {
379             Ok(0) => {
380                 ret = Ok(g.len - start_len);
381                 break;
382             }
383             Ok(n) => g.len += n,
384             Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
385             Err(e) => {
386                 ret = Err(e);
387                 break;
388             }
389         }
390     }
391 
392     ret
393 }
394 
395 /// The `Read` trait allows for reading bytes from a source.
396 ///
397 /// Implementors of the `Read` trait are called 'readers'.
398 ///
399 /// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
400 /// will attempt to pull bytes from this source into a provided buffer. A
401 /// number of other methods are implemented in terms of [`read()`], giving
402 /// implementors a number of ways to read bytes while only needing to implement
403 /// a single method.
404 ///
405 /// Readers are intended to be composable with one another. Many implementors
406 /// throughout [`std::io`] take and provide types which implement the `Read`
407 /// trait.
408 ///
409 /// Please note that each call to [`read()`] may involve a system call, and
410 /// therefore, using something that implements [`BufRead`], such as
411 /// [`BufReader`], will be more efficient.
412 ///
413 /// # Examples
414 ///
415 /// [`File`]s implement `Read`:
416 ///
417 /// ```no_run
418 /// use std::io;
419 /// use std::io::prelude::*;
420 /// use std::fs::File;
421 ///
422 /// fn main() -> io::Result<()> {
423 ///     let mut f = File::open("foo.txt")?;
424 ///     let mut buffer = [0; 10];
425 ///
426 ///     // read up to 10 bytes
427 ///     f.read(&mut buffer)?;
428 ///
429 ///     let mut buffer = vec![0; 10];
430 ///     // read the whole file
431 ///     f.read_to_end(&mut buffer)?;
432 ///
433 ///     // read into a String, so that you don't need to do the conversion.
434 ///     let mut buffer = String::new();
435 ///     f.read_to_string(&mut buffer)?;
436 ///
437 ///     // and more! See the other methods for more details.
438 ///     Ok(())
439 /// }
440 /// ```
441 ///
442 /// Read from [`&str`] because [`&[u8]`][slice] implements `Read`:
443 ///
444 /// ```no_run
445 /// # use std::io;
446 /// use std::io::prelude::*;
447 ///
448 /// fn main() -> io::Result<()> {
449 ///     let mut b = "This string will be read".as_bytes();
450 ///     let mut buffer = [0; 10];
451 ///
452 ///     // read up to 10 bytes
453 ///     b.read(&mut buffer)?;
454 ///
455 ///     // etc... it works exactly as a File does!
456 ///     Ok(())
457 /// }
458 /// ```
459 ///
460 /// [`read()`]: trait.Read.html#tymethod.read
461 /// [`std::io`]: ../../std/io/index.html
462 /// [`File`]: ../fs/struct.File.html
463 /// [`BufRead`]: trait.BufRead.html
464 /// [`BufReader`]: struct.BufReader.html
465 /// [`&str`]: ../../std/primitive.str.html
466 /// [slice]: ../../std/primitive.slice.html
467 #[doc(notable_trait)]
468 pub trait Read {
469     /// Pull some bytes from this source into the specified buffer, returning
470     /// how many bytes were read.
471     ///
472     /// This function does not provide any guarantees about whether it blocks
473     /// waiting for data, but if an object needs to block for a read but cannot
474     /// it will typically signal this via an [`Err`] return value.
475     ///
476     /// If the return value of this method is [`Ok(n)`], then it must be
477     /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
478     /// that the buffer `buf` has been filled in with `n` bytes of data from this
479     /// source. If `n` is `0`, then it can indicate one of two scenarios:
480     ///
481     /// 1. This reader has reached its "end of file" and will likely no longer
482     ///    be able to produce bytes. Note that this does not mean that the
483     ///    reader will *always* no longer be able to produce bytes.
484     /// 2. The buffer specified was 0 bytes in length.
485     ///
486     /// No guarantees are provided about the contents of `buf` when this
487     /// function is called, implementations cannot rely on any property of the
488     /// contents of `buf` being true. It is recommended that implementations
489     /// only write data to `buf` instead of reading its contents.
490     ///
491     /// # Errors
492     ///
493     /// If this function encounters any form of I/O or other error, an error
494     /// variant will be returned. If an error is returned then it must be
495     /// guaranteed that no bytes were read.
496     ///
497     /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
498     /// operation should be retried if there is nothing else to do.
499     ///
500     /// # Examples
501     ///
502     /// [`File`]s implement `Read`:
503     ///
504     /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
505     /// [`Ok(n)`]: ../../std/result/enum.Result.html#variant.Ok
506     /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
507     /// [`File`]: ../fs/struct.File.html
508     ///
509     /// ```no_run
510     /// use std::io;
511     /// use std::io::prelude::*;
512     /// use std::fs::File;
513     ///
514     /// fn main() -> io::Result<()> {
515     ///     let mut f = File::open("foo.txt")?;
516     ///     let mut buffer = [0; 10];
517     ///
518     ///     // read up to 10 bytes
519     ///     f.read(&mut buffer[..])?;
520     ///     Ok(())
521     /// }
522     /// ```
523     fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
524 
525     /// Determines if this `Read`er can work with buffers of uninitialized
526     /// memory.
527     ///
528     /// The default implementation returns an initializer which will zero
529     /// buffers.
530     ///
531     /// If a `Read`er guarantees that it can work properly with uninitialized
532     /// memory, it should call [`Initializer::nop()`]. See the documentation for
533     /// [`Initializer`] for details.
534     ///
535     /// The behavior of this method must be independent of the state of the
536     /// `Read`er - the method only takes `&self` so that it can be used through
537     /// trait objects.
538     ///
539     /// # Safety
540     ///
541     /// This method is unsafe because a `Read`er could otherwise return a
542     /// non-zeroing `Initializer` from another `Read` type without an `unsafe`
543     /// block.
544     ///
545     /// [`Initializer::nop()`]: ../../std/io/struct.Initializer.html#method.nop
546     /// [`Initializer`]: ../../std/io/struct.Initializer.html
547     #[inline]
548     unsafe fn initializer(&self) -> Initializer {
549         Initializer::zeroing()
550     }
551 
552     /// Read all bytes until EOF in this source, placing them into `buf`.
553     ///
554     /// All bytes read from this source will be appended to the specified buffer
555     /// `buf`. This function will continuously call [`read()`] to append more data to
556     /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
557     /// non-[`ErrorKind::Interrupted`] kind.
558     ///
559     /// If successful, this function will return the total number of bytes read.
560     ///
561     /// # Errors
562     ///
563     /// If this function encounters an error of the kind
564     /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
565     /// will continue.
566     ///
567     /// If any other read error is encountered then this function immediately
568     /// returns. Any bytes which have already been read will be appended to
569     /// `buf`.
570     ///
571     /// # Examples
572     ///
573     /// [`File`]s implement `Read`:
574     ///
575     /// [`read()`]: trait.Read.html#tymethod.read
576     /// [`Ok(0)`]: ../../std/result/enum.Result.html#variant.Ok
577     /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
578     /// [`File`]: ../fs/struct.File.html
579     ///
580     /// ```no_run
581     /// use std::io;
582     /// use std::io::prelude::*;
583     /// use std::fs::File;
584     ///
585     /// fn main() -> io::Result<()> {
586     ///     let mut f = File::open("foo.txt")?;
587     ///     let mut buffer = Vec::new();
588     ///
589     ///     // read the whole file
590     ///     f.read_to_end(&mut buffer)?;
591     ///     Ok(())
592     /// }
593     /// ```
594     ///
595     /// (See also the [`std::fs::read`] convenience function for reading from a
596     /// file.)
597     ///
598     /// [`std::fs::read`]: ../fs/fn.read.html
599     #[cfg(feature="alloc")]
600     fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
601         read_to_end(self, buf)
602     }
603 
604     /// Read all bytes until EOF in this source, appending them to `buf`.
605     ///
606     /// If successful, this function returns the number of bytes which were read
607     /// and appended to `buf`.
608     ///
609     /// # Errors
610     ///
611     /// If the data in this stream is *not* valid UTF-8 then an error is
612     /// returned and `buf` is unchanged.
613     ///
614     /// See [`read_to_end`][readtoend] for other error semantics.
615     ///
616     /// [readtoend]: #method.read_to_end
617     ///
618     /// # Examples
619     ///
620     /// [`File`][file]s implement `Read`:
621     ///
622     /// [file]: ../fs/struct.File.html
623     ///
624     /// ```no_run
625     /// use std::io;
626     /// use std::io::prelude::*;
627     /// use std::fs::File;
628     ///
629     /// fn main() -> io::Result<()> {
630     ///     let mut f = File::open("foo.txt")?;
631     ///     let mut buffer = String::new();
632     ///
633     ///     f.read_to_string(&mut buffer)?;
634     ///     Ok(())
635     /// }
636     /// ```
637     ///
638     /// (See also the [`std::fs::read_to_string`] convenience function for
639     /// reading from a file.)
640     ///
641     /// [`std::fs::read_to_string`]: ../fs/fn.read_to_string.html
642     #[cfg(feature="alloc")]
643     fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
644         // Note that we do *not* call `.read_to_end()` here. We are passing
645         // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
646         // method to fill it up. An arbitrary implementation could overwrite the
647         // entire contents of the vector, not just append to it (which is what
648         // we are expecting).
649         //
650         // To prevent extraneously checking the UTF-8-ness of the entire buffer
651         // we pass it to our hardcoded `read_to_end` implementation which we
652         // know is guaranteed to only read data into the end of the buffer.
653         append_to_string(buf, |b| read_to_end(self, b))
654     }
655 
656     /// Read the exact number of bytes required to fill `buf`.
657     ///
658     /// This function reads as many bytes as necessary to completely fill the
659     /// specified buffer `buf`.
660     ///
661     /// No guarantees are provided about the contents of `buf` when this
662     /// function is called, implementations cannot rely on any property of the
663     /// contents of `buf` being true. It is recommended that implementations
664     /// only write data to `buf` instead of reading its contents.
665     ///
666     /// # Errors
667     ///
668     /// If this function encounters an error of the kind
669     /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
670     /// will continue.
671     ///
672     /// If this function encounters an "end of file" before completely filling
673     /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
674     /// The contents of `buf` are unspecified in this case.
675     ///
676     /// If any other read error is encountered then this function immediately
677     /// returns. The contents of `buf` are unspecified in this case.
678     ///
679     /// If this function returns an error, it is unspecified how many bytes it
680     /// has read, but it will never read more than would be necessary to
681     /// completely fill the buffer.
682     ///
683     /// # Examples
684     ///
685     /// [`File`]s implement `Read`:
686     ///
687     /// [`File`]: ../fs/struct.File.html
688     /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
689     /// [`ErrorKind::UnexpectedEof`]: ../../std/io/enum.ErrorKind.html#variant.UnexpectedEof
690     ///
691     /// ```no_run
692     /// use std::io;
693     /// use std::io::prelude::*;
694     /// use std::fs::File;
695     ///
696     /// fn main() -> io::Result<()> {
697     ///     let mut f = File::open("foo.txt")?;
698     ///     let mut buffer = [0; 10];
699     ///
700     ///     // read exactly 10 bytes
701     ///     f.read_exact(&mut buffer)?;
702     ///     Ok(())
703     /// }
704     /// ```
705     fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
706         while !buf.is_empty() {
707             match self.read(buf) {
708                 Ok(0) => break,
709                 Ok(n) => { let tmp = buf; buf = &mut tmp[n..]; }
710                 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
711                 Err(e) => return Err(e),
712             }
713         }
714         if !buf.is_empty() {
715             Err(Error::new(ErrorKind::UnexpectedEof,
716                            "failed to fill whole buffer"))
717         } else {
718             Ok(())
719         }
720     }
721 
722     /// Creates a "by reference" adaptor for this instance of `Read`.
723     ///
724     /// The returned adaptor also implements `Read` and will simply borrow this
725     /// current reader.
726     ///
727     /// # Examples
728     ///
729     /// [`File`][file]s implement `Read`:
730     ///
731     /// [file]: ../fs/struct.File.html
732     ///
733     /// ```no_run
734     /// use std::io;
735     /// use std::io::Read;
736     /// use std::fs::File;
737     ///
738     /// fn main() -> io::Result<()> {
739     ///     let mut f = File::open("foo.txt")?;
740     ///     let mut buffer = Vec::new();
741     ///     let mut other_buffer = Vec::new();
742     ///
743     ///     {
744     ///         let reference = f.by_ref();
745     ///
746     ///         // read at most 5 bytes
747     ///         reference.take(5).read_to_end(&mut buffer)?;
748     ///
749     ///     } // drop our &mut reference so we can use f again
750     ///
751     ///     // original file still usable, read the rest
752     ///     f.read_to_end(&mut other_buffer)?;
753     ///     Ok(())
754     /// }
755     /// ```
756     fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
757 
758     /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
759     ///
760     /// The returned type implements [`Iterator`] where the `Item` is
761     /// [`Result`]`<`[`u8`]`, `[`io::Error`]`>`.
762     /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
763     /// otherwise. EOF is mapped to returning [`None`] from this iterator.
764     ///
765     /// # Examples
766     ///
767     /// [`File`][file]s implement `Read`:
768     ///
769     /// [file]: ../fs/struct.File.html
770     /// [`Iterator`]: ../../std/iter/trait.Iterator.html
771     /// [`Result`]: ../../std/result/enum.Result.html
772     /// [`io::Error`]: ../../std/io/struct.Error.html
773     /// [`u8`]: ../../std/primitive.u8.html
774     /// [`Ok`]: ../../std/result/enum.Result.html#variant.Ok
775     /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
776     /// [`None`]: ../../std/option/enum.Option.html#variant.None
777     ///
778     /// ```no_run
779     /// use std::io;
780     /// use std::io::prelude::*;
781     /// use std::fs::File;
782     ///
783     /// fn main() -> io::Result<()> {
784     ///     let mut f = File::open("foo.txt")?;
785     ///
786     ///     for byte in f.bytes() {
787     ///         println!("{}", byte.unwrap());
788     ///     }
789     ///     Ok(())
790     /// }
791     /// ```
792     fn bytes(self) -> Bytes<Self> where Self: Sized {
793         Bytes { inner: self }
794     }
795 
796     /// Creates an adaptor which will chain this stream with another.
797     ///
798     /// The returned `Read` instance will first read all bytes from this object
799     /// until EOF is encountered. Afterwards the output is equivalent to the
800     /// output of `next`.
801     ///
802     /// # Examples
803     ///
804     /// [`File`][file]s implement `Read`:
805     ///
806     /// [file]: ../fs/struct.File.html
807     ///
808     /// ```no_run
809     /// use std::io;
810     /// use std::io::prelude::*;
811     /// use std::fs::File;
812     ///
813     /// fn main() -> io::Result<()> {
814     ///     let mut f1 = File::open("foo.txt")?;
815     ///     let mut f2 = File::open("bar.txt")?;
816     ///
817     ///     let mut handle = f1.chain(f2);
818     ///     let mut buffer = String::new();
819     ///
820     ///     // read the value into a String. We could use any Read method here,
821     ///     // this is just one example.
822     ///     handle.read_to_string(&mut buffer)?;
823     ///     Ok(())
824     /// }
825     /// ```
826     fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized {
827         Chain { first: self, second: next, done_first: false }
828     }
829 
830     /// Creates an adaptor which will read at most `limit` bytes from it.
831     ///
832     /// This function returns a new instance of `Read` which will read at most
833     /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
834     /// read errors will not count towards the number of bytes read and future
835     /// calls to [`read()`] may succeed.
836     ///
837     /// # Examples
838     ///
839     /// [`File`]s implement `Read`:
840     ///
841     /// [`File`]: ../fs/struct.File.html
842     /// [`Ok(0)`]: ../../std/result/enum.Result.html#variant.Ok
843     /// [`read()`]: trait.Read.html#tymethod.read
844     ///
845     /// ```no_run
846     /// use std::io;
847     /// use std::io::prelude::*;
848     /// use std::fs::File;
849     ///
850     /// fn main() -> io::Result<()> {
851     ///     let mut f = File::open("foo.txt")?;
852     ///     let mut buffer = [0; 5];
853     ///
854     ///     // read at most five bytes
855     ///     let mut handle = f.take(5);
856     ///
857     ///     handle.read(&mut buffer)?;
858     ///     Ok(())
859     /// }
860     /// ```
861     fn take(self, limit: u64) -> Take<Self> where Self: Sized {
862         Take { inner: self, limit: limit }
863     }
864 }
865 
866 /// A type used to conditionally initialize buffers passed to `Read` methods.
867 #[derive(Debug)]
868 pub struct Initializer(bool);
869 
870 impl Initializer {
871     /// Returns a new `Initializer` which will zero out buffers.
872     #[inline]
873     pub fn zeroing() -> Initializer {
874         Initializer(true)
875     }
876 
877     /// Returns a new `Initializer` which will not zero out buffers.
878     ///
879     /// # Safety
880     ///
881     /// This may only be called by `Read`ers which guarantee that they will not
882     /// read from buffers passed to `Read` methods, and that the return value of
883     /// the method accurately reflects the number of bytes that have been
884     /// written to the head of the buffer.
885     #[inline]
886     pub unsafe fn nop() -> Initializer {
887         Initializer(false)
888     }
889 
890     /// Indicates if a buffer should be initialized.
891     #[inline]
892     pub fn should_initialize(&self) -> bool {
893         self.0
894     }
895 
896     /// Initializes a buffer if necessary.
897     #[inline]
898     pub fn initialize(&self, buf: &mut [u8]) {
899         if self.should_initialize() {
900             unsafe { ptr::write_bytes(buf.as_mut_ptr(), 0, buf.len()) }
901         }
902     }
903 }
904 
905 /// A trait for objects which are byte-oriented sinks.
906 ///
907 /// Implementors of the `Write` trait are sometimes called 'writers'.
908 ///
909 /// Writers are defined by two required methods, [`write`] and [`flush`]:
910 ///
911 /// * The [`write`] method will attempt to write some data into the object,
912 ///   returning how many bytes were successfully written.
913 ///
914 /// * The [`flush`] method is useful for adaptors and explicit buffers
915 ///   themselves for ensuring that all buffered data has been pushed out to the
916 ///   'true sink'.
917 ///
918 /// Writers are intended to be composable with one another. Many implementors
919 /// throughout [`std::io`] take and provide types which implement the `Write`
920 /// trait.
921 ///
922 /// [`write`]: #tymethod.write
923 /// [`flush`]: #tymethod.flush
924 /// [`std::io`]: index.html
925 ///
926 /// # Examples
927 ///
928 /// ```no_run
929 /// use std::io::prelude::*;
930 /// use std::fs::File;
931 ///
932 /// fn main() -> std::io::Result<()> {
933 ///     let mut buffer = File::create("foo.txt")?;
934 ///
935 ///     buffer.write(b"some bytes")?;
936 ///     Ok(())
937 /// }
938 /// ```
939 #[doc(notable_trait)]
940 pub trait Write {
941     /// Write a buffer into this object, returning how many bytes were written.
942     ///
943     /// This function will attempt to write the entire contents of `buf`, but
944     /// the entire write may not succeed, or the write may also generate an
945     /// error. A call to `write` represents *at most one* attempt to write to
946     /// any wrapped object.
947     ///
948     /// Calls to `write` are not guaranteed to block waiting for data to be
949     /// written, and a write which would otherwise block can be indicated through
950     /// an [`Err`] variant.
951     ///
952     /// If the return value is [`Ok(n)`] then it must be guaranteed that
953     /// `0 <= n <= buf.len()`. A return value of `0` typically means that the
954     /// underlying object is no longer able to accept bytes and will likely not
955     /// be able to in the future as well, or that the buffer provided is empty.
956     ///
957     /// # Errors
958     ///
959     /// Each call to `write` may generate an I/O error indicating that the
960     /// operation could not be completed. If an error is returned then no bytes
961     /// in the buffer were written to this writer.
962     ///
963     /// It is **not** considered an error if the entire buffer could not be
964     /// written to this writer.
965     ///
966     /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
967     /// write operation should be retried if there is nothing else to do.
968     ///
969     /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
970     /// [`Ok(n)`]:  ../../std/result/enum.Result.html#variant.Ok
971     /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
972     ///
973     /// # Examples
974     ///
975     /// ```no_run
976     /// use std::io::prelude::*;
977     /// use std::fs::File;
978     ///
979     /// fn main() -> std::io::Result<()> {
980     ///     let mut buffer = File::create("foo.txt")?;
981     ///
982     ///     // Writes some prefix of the byte string, not necessarily all of it.
983     ///     buffer.write(b"some bytes")?;
984     ///     Ok(())
985     /// }
986     /// ```
987     fn write(&mut self, buf: &[u8]) -> Result<usize>;
988 
989     /// Flush this output stream, ensuring that all intermediately buffered
990     /// contents reach their destination.
991     ///
992     /// # Errors
993     ///
994     /// It is considered an error if not all bytes could be written due to
995     /// I/O errors or EOF being reached.
996     ///
997     /// # Examples
998     ///
999     /// ```no_run
1000     /// use std::io::prelude::*;
1001     /// use std::io::BufWriter;
1002     /// use std::fs::File;
1003     ///
1004     /// fn main() -> std::io::Result<()> {
1005     ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
1006     ///
1007     ///     buffer.write(b"some bytes")?;
1008     ///     buffer.flush()?;
1009     ///     Ok(())
1010     /// }
1011     /// ```
1012     fn flush(&mut self) -> Result<()>;
1013 
1014     /// Attempts to write an entire buffer into this write.
1015     ///
1016     /// This method will continuously call [`write`] until there is no more data
1017     /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
1018     /// returned. This method will not return until the entire buffer has been
1019     /// successfully written or such an error occurs. The first error that is
1020     /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
1021     /// returned.
1022     ///
1023     /// # Errors
1024     ///
1025     /// This function will return the first error of
1026     /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
1027     ///
1028     /// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
1029     /// [`write`]: #tymethod.write
1030     ///
1031     /// # Examples
1032     ///
1033     /// ```no_run
1034     /// use std::io::prelude::*;
1035     /// use std::fs::File;
1036     ///
1037     /// fn main() -> std::io::Result<()> {
1038     ///     let mut buffer = File::create("foo.txt")?;
1039     ///
1040     ///     buffer.write_all(b"some bytes")?;
1041     ///     Ok(())
1042     /// }
1043     /// ```
1044     fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
1045         while !buf.is_empty() {
1046             match self.write(buf) {
1047                 Ok(0) => return Err(Error::new(ErrorKind::WriteZero,
1048                                                "failed to write whole buffer")),
1049                 Ok(n) => buf = &buf[n..],
1050                 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
1051                 Err(e) => return Err(e),
1052             }
1053         }
1054         Ok(())
1055     }
1056 
1057     /// Writes a formatted string into this writer, returning any error
1058     /// encountered.
1059     ///
1060     /// This method is primarily used to interface with the
1061     /// [`format_args!`][formatargs] macro, but it is rare that this should
1062     /// explicitly be called. The [`write!`][write] macro should be favored to
1063     /// invoke this method instead.
1064     ///
1065     /// [formatargs]: ../macro.format_args.html
1066     /// [write]: ../macro.write.html
1067     ///
1068     /// This function internally uses the [`write_all`][writeall] method on
1069     /// this trait and hence will continuously write data so long as no errors
1070     /// are received. This also means that partial writes are not indicated in
1071     /// this signature.
1072     ///
1073     /// [writeall]: #method.write_all
1074     ///
1075     /// # Errors
1076     ///
1077     /// This function will return any I/O error reported while formatting.
1078     ///
1079     /// # Examples
1080     ///
1081     /// ```no_run
1082     /// use std::io::prelude::*;
1083     /// use std::fs::File;
1084     ///
1085     /// fn main() -> std::io::Result<()> {
1086     ///     let mut buffer = File::create("foo.txt")?;
1087     ///
1088     ///     // this call
1089     ///     write!(buffer, "{:.*}", 2, 1.234567)?;
1090     ///     // turns into this:
1091     ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
1092     ///     Ok(())
1093     /// }
1094     /// ```
1095     fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<()> {
1096         // Create a shim which translates a Write to a fmt::Write and saves
1097         // off I/O errors. instead of discarding them
1098         struct Adaptor<'a, T: ?Sized + 'a> {
1099             inner: &'a mut T,
1100             error: Result<()>,
1101         }
1102 
1103         impl<'a, T: Write + ?Sized> fmt::Write for Adaptor<'a, T> {
1104             fn write_str(&mut self, s: &str) -> fmt::Result {
1105                 match self.inner.write_all(s.as_bytes()) {
1106                     Ok(()) => Ok(()),
1107                     Err(e) => {
1108                         self.error = Err(e);
1109                         Err(fmt::Error)
1110                     }
1111                 }
1112             }
1113         }
1114 
1115         let mut output = Adaptor { inner: self, error: Ok(()) };
1116         match fmt::write(&mut output, fmt) {
1117             Ok(()) => Ok(()),
1118             Err(..) => {
1119                 // check if the error came from the underlying `Write` or not
1120                 if output.error.is_err() {
1121                     output.error
1122                 } else {
1123                     Err(Error::new(ErrorKind::Other, "formatter error"))
1124                 }
1125             }
1126         }
1127     }
1128 
1129     /// Creates a "by reference" adaptor for this instance of `Write`.
1130     ///
1131     /// The returned adaptor also implements `Write` and will simply borrow this
1132     /// current writer.
1133     ///
1134     /// # Examples
1135     ///
1136     /// ```no_run
1137     /// use std::io::Write;
1138     /// use std::fs::File;
1139     ///
1140     /// fn main() -> std::io::Result<()> {
1141     ///     let mut buffer = File::create("foo.txt")?;
1142     ///
1143     ///     let reference = buffer.by_ref();
1144     ///
1145     ///     // we can use reference just like our original buffer
1146     ///     reference.write_all(b"some bytes")?;
1147     ///     Ok(())
1148     /// }
1149     /// ```
1150     fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
1151 }
1152 
1153 /// The `Seek` trait provides a cursor which can be moved within a stream of
1154 /// bytes.
1155 ///
1156 /// The stream typically has a fixed size, allowing seeking relative to either
1157 /// end or the current offset.
1158 ///
1159 /// # Examples
1160 ///
1161 /// [`File`][file]s implement `Seek`:
1162 ///
1163 /// [file]: ../fs/struct.File.html
1164 ///
1165 /// ```no_run
1166 /// use std::io;
1167 /// use std::io::prelude::*;
1168 /// use std::fs::File;
1169 /// use std::io::SeekFrom;
1170 ///
1171 /// fn main() -> io::Result<()> {
1172 ///     let mut f = File::open("foo.txt")?;
1173 ///
1174 ///     // move the cursor 42 bytes from the start of the file
1175 ///     f.seek(SeekFrom::Start(42))?;
1176 ///     Ok(())
1177 /// }
1178 /// ```
1179 pub trait Seek {
1180     /// Seek to an offset, in bytes, in a stream.
1181     ///
1182     /// A seek beyond the end of a stream is allowed, but behavior is defined
1183     /// by the implementation.
1184     ///
1185     /// If the seek operation completed successfully,
1186     /// this method returns the new position from the start of the stream.
1187     /// That position can be used later with [`SeekFrom::Start`].
1188     ///
1189     /// # Errors
1190     ///
1191     /// Seeking to a negative offset is considered an error.
1192     ///
1193     /// [`SeekFrom::Start`]: enum.SeekFrom.html#variant.Start
1194     fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1195 }
1196 
1197 /// Enumeration of possible methods to seek within an I/O object.
1198 ///
1199 /// It is used by the [`Seek`] trait.
1200 ///
1201 /// [`Seek`]: trait.Seek.html
1202 #[derive(Copy, PartialEq, Eq, Clone, Debug)]
1203 pub enum SeekFrom {
1204     /// Set the offset to the provided number of bytes.
1205     Start(u64),
1206 
1207     /// Set the offset to the size of this object plus the specified number of
1208     /// bytes.
1209     ///
1210     /// It is possible to seek beyond the end of an object, but it's an error to
1211     /// seek before byte 0.
1212     End(i64),
1213 
1214     /// Set the offset to the current position plus the specified number of
1215     /// bytes.
1216     ///
1217     /// It is possible to seek beyond the end of an object, but it's an error to
1218     /// seek before byte 0.
1219     Current(i64),
1220 }
1221 
1222 #[cfg(feature="alloc")]
1223 fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>)
1224                                    -> Result<usize> {
1225     let mut read = 0;
1226     loop {
1227         let (done, used) = {
1228             let available = match r.fill_buf() {
1229                 Ok(n) => n,
1230                 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1231                 Err(e) => return Err(e)
1232             };
1233             match memchr::memchr(delim, available) {
1234                 Some(i) => {
1235                     buf.extend_from_slice(&available[..i + 1]);
1236                     (true, i + 1)
1237                 }
1238                 None => {
1239                     buf.extend_from_slice(available);
1240                     (false, available.len())
1241                 }
1242             }
1243         };
1244         r.consume(used);
1245         read += used;
1246         if done || used == 0 {
1247             return Ok(read);
1248         }
1249     }
1250 }
1251 
1252 /// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
1253 /// to perform extra ways of reading.
1254 ///
1255 /// For example, reading line-by-line is inefficient without using a buffer, so
1256 /// if you want to read by line, you'll need `BufRead`, which includes a
1257 /// [`read_line`] method as well as a [`lines`] iterator.
1258 ///
1259 /// # Examples
1260 ///
1261 /// A locked standard input implements `BufRead`:
1262 ///
1263 /// ```no_run
1264 /// use std::io;
1265 /// use std::io::prelude::*;
1266 ///
1267 /// let stdin = io::stdin();
1268 /// for line in stdin.lock().lines() {
1269 ///     println!("{}", line.unwrap());
1270 /// }
1271 /// ```
1272 ///
1273 /// If you have something that implements [`Read`], you can use the [`BufReader`
1274 /// type][`BufReader`] to turn it into a `BufRead`.
1275 ///
1276 /// For example, [`File`] implements [`Read`], but not `BufRead`.
1277 /// [`BufReader`] to the rescue!
1278 ///
1279 /// [`BufReader`]: struct.BufReader.html
1280 /// [`File`]: ../fs/struct.File.html
1281 /// [`read_line`]: #method.read_line
1282 /// [`lines`]: #method.lines
1283 /// [`Read`]: trait.Read.html
1284 ///
1285 /// ```no_run
1286 /// use std::io::{self, BufReader};
1287 /// use std::io::prelude::*;
1288 /// use std::fs::File;
1289 ///
1290 /// fn main() -> io::Result<()> {
1291 ///     let f = File::open("foo.txt")?;
1292 ///     let f = BufReader::new(f);
1293 ///
1294 ///     for line in f.lines() {
1295 ///         println!("{}", line.unwrap());
1296 ///     }
1297 ///
1298 ///     Ok(())
1299 /// }
1300 /// ```
1301 ///
1302 #[cfg(feature="alloc")]
1303 pub trait BufRead: Read {
1304     /// Returns the contents of the internal buffer, filling it with more data
1305     /// from the inner reader if it is empty.
1306     ///
1307     /// This function is a lower-level call. It needs to be paired with the
1308     /// [`consume`] method to function properly. When calling this
1309     /// method, none of the contents will be "read" in the sense that later
1310     /// calling `read` may return the same contents. As such, [`consume`] must
1311     /// be called with the number of bytes that are consumed from this buffer to
1312     /// ensure that the bytes are never returned twice.
1313     ///
1314     /// [`consume`]: #tymethod.consume
1315     ///
1316     /// An empty buffer returned indicates that the stream has reached EOF.
1317     ///
1318     /// # Errors
1319     ///
1320     /// This function will return an I/O error if the underlying reader was
1321     /// read, but returned an error.
1322     ///
1323     /// # Examples
1324     ///
1325     /// A locked standard input implements `BufRead`:
1326     ///
1327     /// ```no_run
1328     /// use std::io;
1329     /// use std::io::prelude::*;
1330     ///
1331     /// let stdin = io::stdin();
1332     /// let mut stdin = stdin.lock();
1333     ///
1334     /// // we can't have two `&mut` references to `stdin`, so use a block
1335     /// // to end the borrow early.
1336     /// let length = {
1337     ///     let buffer = stdin.fill_buf().unwrap();
1338     ///
1339     ///     // work with buffer
1340     ///     println!("{:?}", buffer);
1341     ///
1342     ///     buffer.len()
1343     /// };
1344     ///
1345     /// // ensure the bytes we worked with aren't returned again later
1346     /// stdin.consume(length);
1347     /// ```
1348     fn fill_buf(&mut self) -> Result<&[u8]>;
1349 
1350     /// Tells this buffer that `amt` bytes have been consumed from the buffer,
1351     /// so they should no longer be returned in calls to `read`.
1352     ///
1353     /// This function is a lower-level call. It needs to be paired with the
1354     /// [`fill_buf`] method to function properly. This function does
1355     /// not perform any I/O, it simply informs this object that some amount of
1356     /// its buffer, returned from [`fill_buf`], has been consumed and should
1357     /// no longer be returned. As such, this function may do odd things if
1358     /// [`fill_buf`] isn't called before calling it.
1359     ///
1360     /// The `amt` must be `<=` the number of bytes in the buffer returned by
1361     /// [`fill_buf`].
1362     ///
1363     /// # Examples
1364     ///
1365     /// Since `consume()` is meant to be used with [`fill_buf`],
1366     /// that method's example includes an example of `consume()`.
1367     ///
1368     /// [`fill_buf`]: #tymethod.fill_buf
1369     fn consume(&mut self, amt: usize);
1370 
1371     /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
1372     ///
1373     /// This function will read bytes from the underlying stream until the
1374     /// delimiter or EOF is found. Once found, all bytes up to, and including,
1375     /// the delimiter (if found) will be appended to `buf`.
1376     ///
1377     /// If successful, this function will return the total number of bytes read.
1378     ///
1379     /// # Errors
1380     ///
1381     /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
1382     /// will otherwise return any errors returned by [`fill_buf`].
1383     ///
1384     /// If an I/O error is encountered then all bytes read so far will be
1385     /// present in `buf` and its length will have been adjusted appropriately.
1386     ///
1387     /// [`fill_buf`]: #tymethod.fill_buf
1388     /// [`ErrorKind::Interrupted`]: enum.ErrorKind.html#variant.Interrupted
1389     ///
1390     /// # Examples
1391     ///
1392     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1393     /// this example, we use [`Cursor`] to read all the bytes in a byte slice
1394     /// in hyphen delimited segments:
1395     ///
1396     /// [`Cursor`]: struct.Cursor.html
1397     ///
1398     /// ```
1399     /// use std::io::{self, BufRead};
1400     ///
1401     /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
1402     /// let mut buf = vec![];
1403     ///
1404     /// // cursor is at 'l'
1405     /// let num_bytes = cursor.read_until(b'-', &mut buf)
1406     ///     .expect("reading from cursor won't fail");
1407     /// assert_eq!(num_bytes, 6);
1408     /// assert_eq!(buf, b"lorem-");
1409     /// buf.clear();
1410     ///
1411     /// // cursor is at 'i'
1412     /// let num_bytes = cursor.read_until(b'-', &mut buf)
1413     ///     .expect("reading from cursor won't fail");
1414     /// assert_eq!(num_bytes, 5);
1415     /// assert_eq!(buf, b"ipsum");
1416     /// buf.clear();
1417     ///
1418     /// // cursor is at EOF
1419     /// let num_bytes = cursor.read_until(b'-', &mut buf)
1420     ///     .expect("reading from cursor won't fail");
1421     /// assert_eq!(num_bytes, 0);
1422     /// assert_eq!(buf, b"");
1423     /// ```
1424     fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
1425         read_until(self, byte, buf)
1426     }
1427 
1428     /// Read all bytes until a newline (the 0xA byte) is reached, and append
1429     /// them to the provided buffer.
1430     ///
1431     /// This function will read bytes from the underlying stream until the
1432     /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
1433     /// up to, and including, the delimiter (if found) will be appended to
1434     /// `buf`.
1435     ///
1436     /// If successful, this function will return the total number of bytes read.
1437     ///
1438     /// An empty buffer returned indicates that the stream has reached EOF.
1439     ///
1440     /// # Errors
1441     ///
1442     /// This function has the same error semantics as [`read_until`] and will
1443     /// also return an error if the read bytes are not valid UTF-8. If an I/O
1444     /// error is encountered then `buf` may contain some bytes already read in
1445     /// the event that all data read so far was valid UTF-8.
1446     ///
1447     /// [`read_until`]: #method.read_until
1448     ///
1449     /// # Examples
1450     ///
1451     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1452     /// this example, we use [`Cursor`] to read all the lines in a byte slice:
1453     ///
1454     /// [`Cursor`]: struct.Cursor.html
1455     ///
1456     /// ```
1457     /// use std::io::{self, BufRead};
1458     ///
1459     /// let mut cursor = io::Cursor::new(b"foo\nbar");
1460     /// let mut buf = String::new();
1461     ///
1462     /// // cursor is at 'f'
1463     /// let num_bytes = cursor.read_line(&mut buf)
1464     ///     .expect("reading from cursor won't fail");
1465     /// assert_eq!(num_bytes, 4);
1466     /// assert_eq!(buf, "foo\n");
1467     /// buf.clear();
1468     ///
1469     /// // cursor is at 'b'
1470     /// let num_bytes = cursor.read_line(&mut buf)
1471     ///     .expect("reading from cursor won't fail");
1472     /// assert_eq!(num_bytes, 3);
1473     /// assert_eq!(buf, "bar");
1474     /// buf.clear();
1475     ///
1476     /// // cursor is at EOF
1477     /// let num_bytes = cursor.read_line(&mut buf)
1478     ///     .expect("reading from cursor won't fail");
1479     /// assert_eq!(num_bytes, 0);
1480     /// assert_eq!(buf, "");
1481     /// ```
1482     fn read_line(&mut self, buf: &mut String) -> Result<usize> {
1483         // Note that we are not calling the `.read_until` method here, but
1484         // rather our hardcoded implementation. For more details as to why, see
1485         // the comments in `read_to_end`.
1486         append_to_string(buf, |b| read_until(self, b'\n', b))
1487     }
1488 
1489     /// Returns an iterator over the contents of this reader split on the byte
1490     /// `byte`.
1491     ///
1492     /// The iterator returned from this function will return instances of
1493     /// [`io::Result`]`<`[`Vec<u8>`]`>`. Each vector returned will *not* have
1494     /// the delimiter byte at the end.
1495     ///
1496     /// This function will yield errors whenever [`read_until`] would have
1497     /// also yielded an error.
1498     ///
1499     /// [`io::Result`]: type.Result.html
1500     /// [`Vec<u8>`]: ../vec/struct.Vec.html
1501     /// [`read_until`]: #method.read_until
1502     ///
1503     /// # Examples
1504     ///
1505     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1506     /// this example, we use [`Cursor`] to iterate over all hyphen delimited
1507     /// segments in a byte slice
1508     ///
1509     /// [`Cursor`]: struct.Cursor.html
1510     ///
1511     /// ```
1512     /// use std::io::{self, BufRead};
1513     ///
1514     /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
1515     ///
1516     /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
1517     /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
1518     /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
1519     /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
1520     /// assert_eq!(split_iter.next(), None);
1521     /// ```
1522     fn split(self, byte: u8) -> Split<Self> where Self: Sized {
1523         Split { buf: self, delim: byte }
1524     }
1525 
1526     /// Returns an iterator over the lines of this reader.
1527     ///
1528     /// The iterator returned from this function will yield instances of
1529     /// [`io::Result`]`<`[`String`]`>`. Each string returned will *not* have a newline
1530     /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end.
1531     ///
1532     /// [`io::Result`]: type.Result.html
1533     /// [`String`]: ../string/struct.String.html
1534     ///
1535     /// # Examples
1536     ///
1537     /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
1538     /// this example, we use [`Cursor`] to iterate over all the lines in a byte
1539     /// slice.
1540     ///
1541     /// [`Cursor`]: struct.Cursor.html
1542     ///
1543     /// ```
1544     /// use std::io::{self, BufRead};
1545     ///
1546     /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
1547     ///
1548     /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
1549     /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
1550     /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
1551     /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
1552     /// assert_eq!(lines_iter.next(), None);
1553     /// ```
1554     ///
1555     /// # Errors
1556     ///
1557     /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
1558     ///
1559     /// [`BufRead::read_line`]: trait.BufRead.html#method.read_line
1560     fn lines(self) -> Lines<Self> where Self: Sized {
1561         Lines { buf: self }
1562     }
1563 }
1564 
1565 /// Adaptor to chain together two readers.
1566 ///
1567 /// This struct is generally created by calling [`chain`] on a reader.
1568 /// Please see the documentation of [`chain`] for more details.
1569 ///
1570 /// [`chain`]: trait.Read.html#method.chain
1571 pub struct Chain<T, U> {
1572     first: T,
1573     second: U,
1574     done_first: bool,
1575 }
1576 
1577 impl<T, U> Chain<T, U> {
1578     /// Consumes the `Chain`, returning the wrapped readers.
1579     ///
1580     /// # Examples
1581     ///
1582     /// ```no_run
1583     /// use std::io;
1584     /// use std::io::prelude::*;
1585     /// use std::fs::File;
1586     ///
1587     /// fn main() -> io::Result<()> {
1588     ///     let mut foo_file = File::open("foo.txt")?;
1589     ///     let mut bar_file = File::open("bar.txt")?;
1590     ///
1591     ///     let chain = foo_file.chain(bar_file);
1592     ///     let (foo_file, bar_file) = chain.into_inner();
1593     ///     Ok(())
1594     /// }
1595     /// ```
1596     pub fn into_inner(self) -> (T, U) {
1597         (self.first, self.second)
1598     }
1599 
1600     /// Gets references to the underlying readers in this `Chain`.
1601     ///
1602     /// # Examples
1603     ///
1604     /// ```no_run
1605     /// use std::io;
1606     /// use std::io::prelude::*;
1607     /// use std::fs::File;
1608     ///
1609     /// fn main() -> io::Result<()> {
1610     ///     let mut foo_file = File::open("foo.txt")?;
1611     ///     let mut bar_file = File::open("bar.txt")?;
1612     ///
1613     ///     let chain = foo_file.chain(bar_file);
1614     ///     let (foo_file, bar_file) = chain.get_ref();
1615     ///     Ok(())
1616     /// }
1617     /// ```
1618     pub fn get_ref(&self) -> (&T, &U) {
1619         (&self.first, &self.second)
1620     }
1621 
1622     /// Gets mutable references to the underlying readers in this `Chain`.
1623     ///
1624     /// Care should be taken to avoid modifying the internal I/O state of the
1625     /// underlying readers as doing so may corrupt the internal state of this
1626     /// `Chain`.
1627     ///
1628     /// # Examples
1629     ///
1630     /// ```no_run
1631     /// use std::io;
1632     /// use std::io::prelude::*;
1633     /// use std::fs::File;
1634     ///
1635     /// fn main() -> io::Result<()> {
1636     ///     let mut foo_file = File::open("foo.txt")?;
1637     ///     let mut bar_file = File::open("bar.txt")?;
1638     ///
1639     ///     let mut chain = foo_file.chain(bar_file);
1640     ///     let (foo_file, bar_file) = chain.get_mut();
1641     ///     Ok(())
1642     /// }
1643     /// ```
1644     pub fn get_mut(&mut self) -> (&mut T, &mut U) {
1645         (&mut self.first, &mut self.second)
1646     }
1647 }
1648 
1649 impl<T: fmt::Debug, U: fmt::Debug> fmt::Debug for Chain<T, U> {
1650     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1651         f.debug_struct("Chain")
1652             .field("t", &self.first)
1653             .field("u", &self.second)
1654             .finish()
1655     }
1656 }
1657 
1658 impl<T: Read, U: Read> Read for Chain<T, U> {
1659     fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1660         if !self.done_first {
1661             match self.first.read(buf)? {
1662                 0 if buf.len() != 0 => { self.done_first = true; }
1663                 n => return Ok(n),
1664             }
1665         }
1666         self.second.read(buf)
1667     }
1668 
1669     unsafe fn initializer(&self) -> Initializer {
1670         let initializer = self.first.initializer();
1671         if initializer.should_initialize() {
1672             initializer
1673         } else {
1674             self.second.initializer()
1675         }
1676     }
1677 }
1678 
1679 #[cfg(feature="alloc")]
1680 impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
1681     fn fill_buf(&mut self) -> Result<&[u8]> {
1682         if !self.done_first {
1683             match self.first.fill_buf()? {
1684                 buf if buf.len() == 0 => { self.done_first = true; }
1685                 buf => return Ok(buf),
1686             }
1687         }
1688         self.second.fill_buf()
1689     }
1690 
1691     fn consume(&mut self, amt: usize) {
1692         if !self.done_first {
1693             self.first.consume(amt)
1694         } else {
1695             self.second.consume(amt)
1696         }
1697     }
1698 }
1699 
1700 /// Reader adaptor which limits the bytes read from an underlying reader.
1701 ///
1702 /// This struct is generally created by calling [`take`] on a reader.
1703 /// Please see the documentation of [`take`] for more details.
1704 ///
1705 /// [`take`]: trait.Read.html#method.take
1706 #[derive(Debug)]
1707 pub struct Take<T> {
1708     inner: T,
1709     limit: u64,
1710 }
1711 
1712 impl<T> Take<T> {
1713     /// Returns the number of bytes that can be read before this instance will
1714     /// return EOF.
1715     ///
1716     /// # Note
1717     ///
1718     /// This instance may reach `EOF` after reading fewer bytes than indicated by
1719     /// this method if the underlying [`Read`] instance reaches EOF.
1720     ///
1721     /// [`Read`]: ../../std/io/trait.Read.html
1722     ///
1723     /// # Examples
1724     ///
1725     /// ```no_run
1726     /// use std::io;
1727     /// use std::io::prelude::*;
1728     /// use std::fs::File;
1729     ///
1730     /// fn main() -> io::Result<()> {
1731     ///     let f = File::open("foo.txt")?;
1732     ///
1733     ///     // read at most five bytes
1734     ///     let handle = f.take(5);
1735     ///
1736     ///     println!("limit: {}", handle.limit());
1737     ///     Ok(())
1738     /// }
1739     /// ```
1740     pub fn limit(&self) -> u64 { self.limit }
1741 
1742     /// Sets the number of bytes that can be read before this instance will
1743     /// return EOF. This is the same as constructing a new `Take` instance, so
1744     /// the amount of bytes read and the previous limit value don't matter when
1745     /// calling this method.
1746     ///
1747     /// # Examples
1748     ///
1749     /// ```no_run
1750     /// use std::io;
1751     /// use std::io::prelude::*;
1752     /// use std::fs::File;
1753     ///
1754     /// fn main() -> io::Result<()> {
1755     ///     let f = File::open("foo.txt")?;
1756     ///
1757     ///     // read at most five bytes
1758     ///     let mut handle = f.take(5);
1759     ///     handle.set_limit(10);
1760     ///
1761     ///     assert_eq!(handle.limit(), 10);
1762     ///     Ok(())
1763     /// }
1764     /// ```
1765     pub fn set_limit(&mut self, limit: u64) {
1766         self.limit = limit;
1767     }
1768 
1769     /// Consumes the `Take`, returning the wrapped reader.
1770     ///
1771     /// # Examples
1772     ///
1773     /// ```no_run
1774     /// use std::io;
1775     /// use std::io::prelude::*;
1776     /// use std::fs::File;
1777     ///
1778     /// fn main() -> io::Result<()> {
1779     ///     let mut file = File::open("foo.txt")?;
1780     ///
1781     ///     let mut buffer = [0; 5];
1782     ///     let mut handle = file.take(5);
1783     ///     handle.read(&mut buffer)?;
1784     ///
1785     ///     let file = handle.into_inner();
1786     ///     Ok(())
1787     /// }
1788     /// ```
1789     pub fn into_inner(self) -> T {
1790         self.inner
1791     }
1792 
1793     /// Gets a reference to the underlying reader.
1794     ///
1795     /// # Examples
1796     ///
1797     /// ```no_run
1798     /// use std::io;
1799     /// use std::io::prelude::*;
1800     /// use std::fs::File;
1801     ///
1802     /// fn main() -> io::Result<()> {
1803     ///     let mut file = File::open("foo.txt")?;
1804     ///
1805     ///     let mut buffer = [0; 5];
1806     ///     let mut handle = file.take(5);
1807     ///     handle.read(&mut buffer)?;
1808     ///
1809     ///     let file = handle.get_ref();
1810     ///     Ok(())
1811     /// }
1812     /// ```
1813     pub fn get_ref(&self) -> &T {
1814         &self.inner
1815     }
1816 
1817     /// Gets a mutable reference to the underlying reader.
1818     ///
1819     /// Care should be taken to avoid modifying the internal I/O state of the
1820     /// underlying reader as doing so may corrupt the internal limit of this
1821     /// `Take`.
1822     ///
1823     /// # Examples
1824     ///
1825     /// ```no_run
1826     /// use std::io;
1827     /// use std::io::prelude::*;
1828     /// use std::fs::File;
1829     ///
1830     /// fn main() -> io::Result<()> {
1831     ///     let mut file = File::open("foo.txt")?;
1832     ///
1833     ///     let mut buffer = [0; 5];
1834     ///     let mut handle = file.take(5);
1835     ///     handle.read(&mut buffer)?;
1836     ///
1837     ///     let file = handle.get_mut();
1838     ///     Ok(())
1839     /// }
1840     /// ```
1841     pub fn get_mut(&mut self) -> &mut T {
1842         &mut self.inner
1843     }
1844 }
1845 
1846 impl<T: Read> Read for Take<T> {
1847     fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1848         // Don't call into inner reader at all at EOF because it may still block
1849         if self.limit == 0 {
1850             return Ok(0);
1851         }
1852 
1853         let max = cmp::min(buf.len() as u64, self.limit) as usize;
1854         let n = self.inner.read(&mut buf[..max])?;
1855         self.limit -= n as u64;
1856         Ok(n)
1857     }
1858 
1859     unsafe fn initializer(&self) -> Initializer {
1860         self.inner.initializer()
1861     }
1862 
1863     #[cfg(feature="alloc")]
1864     fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
1865         let reservation_size = cmp::min(self.limit, 32) as usize;
1866 
1867         read_to_end_with_reservation(self, buf, reservation_size)
1868     }
1869 }
1870 
1871 #[cfg(feature="alloc")]
1872 impl<T: BufRead> BufRead for Take<T> {
1873     fn fill_buf(&mut self) -> Result<&[u8]> {
1874         // Don't call into inner reader at all at EOF because it may still block
1875         if self.limit == 0 {
1876             return Ok(&[]);
1877         }
1878 
1879         let buf = self.inner.fill_buf()?;
1880         let cap = cmp::min(buf.len() as u64, self.limit) as usize;
1881         Ok(&buf[..cap])
1882     }
1883 
1884     fn consume(&mut self, amt: usize) {
1885         // Don't let callers reset the limit by passing an overlarge value
1886         let amt = cmp::min(amt as u64, self.limit) as usize;
1887         self.limit -= amt as u64;
1888         self.inner.consume(amt);
1889     }
1890 }
1891 
1892 fn read_one_byte(reader: &mut dyn Read) -> Option<Result<u8>> {
1893     let mut buf = [0];
1894     loop {
1895         return match reader.read(&mut buf) {
1896             Ok(0) => None,
1897             Ok(..) => Some(Ok(buf[0])),
1898             Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1899             Err(e) => Some(Err(e)),
1900         };
1901     }
1902 }
1903 
1904 /// An iterator over `u8` values of a reader.
1905 ///
1906 /// This struct is generally created by calling [`bytes`] on a reader.
1907 /// Please see the documentation of [`bytes`] for more details.
1908 ///
1909 /// [`bytes`]: trait.Read.html#method.bytes
1910 #[derive(Debug)]
1911 pub struct Bytes<R> {
1912     inner: R,
1913 }
1914 
1915 impl<R: Read> Iterator for Bytes<R> {
1916     type Item = Result<u8>;
1917 
1918     fn next(&mut self) -> Option<Result<u8>> {
1919         read_one_byte(&mut self.inner)
1920     }
1921 }
1922 
1923 /// An iterator over the contents of an instance of `BufRead` split on a
1924 /// particular byte.
1925 ///
1926 /// This struct is generally created by calling [`split`][split] on a
1927 /// `BufRead`. Please see the documentation of `split()` for more details.
1928 ///
1929 /// [split]: trait.BufRead.html#method.split
1930 #[cfg(feature="alloc")]
1931 #[derive(Debug)]
1932 pub struct Split<B> {
1933     buf: B,
1934     delim: u8,
1935 }
1936 
1937 #[cfg(feature="alloc")]
1938 impl<B: BufRead> Iterator for Split<B> {
1939     type Item = Result<Vec<u8>>;
1940 
1941     fn next(&mut self) -> Option<Result<Vec<u8>>> {
1942         let mut buf = Vec::new();
1943         match self.buf.read_until(self.delim, &mut buf) {
1944             Ok(0) => None,
1945             Ok(_n) => {
1946                 if buf[buf.len() - 1] == self.delim {
1947                     buf.pop();
1948                 }
1949                 Some(Ok(buf))
1950             }
1951             Err(e) => Some(Err(e))
1952         }
1953     }
1954 }
1955 
1956 /// An iterator over the lines of an instance of `BufRead`.
1957 ///
1958 /// This struct is generally created by calling [`lines`][lines] on a
1959 /// `BufRead`. Please see the documentation of `lines()` for more details.
1960 ///
1961 /// [lines]: trait.BufRead.html#method.lines
1962 #[cfg(feature="alloc")]
1963 #[derive(Debug)]
1964 pub struct Lines<B> {
1965     buf: B,
1966 }
1967 
1968 #[cfg(feature="alloc")]
1969 impl<B: BufRead> Iterator for Lines<B> {
1970     type Item = Result<String>;
1971 
1972     fn next(&mut self) -> Option<Result<String>> {
1973         let mut buf = String::new();
1974         match self.buf.read_line(&mut buf) {
1975             Ok(0) => None,
1976             Ok(_n) => {
1977                 if buf.ends_with("\n") {
1978                     buf.pop();
1979                     if buf.ends_with("\r") {
1980                         buf.pop();
1981                     }
1982                 }
1983                 Some(Ok(buf))
1984             }
1985             Err(e) => Some(Err(e))
1986         }
1987     }
1988 }
1989 
1990 #[cfg(test)]
1991 mod tests {
1992     use io::prelude::*;
1993     use io;
1994     use super::Cursor;
1995     use test;
1996     use super::repeat;
1997 
1998     #[test]
1999     #[cfg_attr(target_os = "emscripten", ignore)]
2000     fn read_until() {
2001         let mut buf = Cursor::new(&b"12"[..]);
2002         let mut v = Vec::new();
2003         assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2);
2004         assert_eq!(v, b"12");
2005 
2006         let mut buf = Cursor::new(&b"1233"[..]);
2007         let mut v = Vec::new();
2008         assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3);
2009         assert_eq!(v, b"123");
2010         v.truncate(0);
2011         assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1);
2012         assert_eq!(v, b"3");
2013         v.truncate(0);
2014         assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0);
2015         assert_eq!(v, []);
2016     }
2017 
2018     #[test]
2019     fn split() {
2020         let buf = Cursor::new(&b"12"[..]);
2021         let mut s = buf.split(b'3');
2022         assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
2023         assert!(s.next().is_none());
2024 
2025         let buf = Cursor::new(&b"1233"[..]);
2026         let mut s = buf.split(b'3');
2027         assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
2028         assert_eq!(s.next().unwrap().unwrap(), vec![]);
2029         assert!(s.next().is_none());
2030     }
2031 
2032     #[test]
2033     fn read_line() {
2034         let mut buf = Cursor::new(&b"12"[..]);
2035         let mut v = String::new();
2036         assert_eq!(buf.read_line(&mut v).unwrap(), 2);
2037         assert_eq!(v, "12");
2038 
2039         let mut buf = Cursor::new(&b"12\n\n"[..]);
2040         let mut v = String::new();
2041         assert_eq!(buf.read_line(&mut v).unwrap(), 3);
2042         assert_eq!(v, "12\n");
2043         v.truncate(0);
2044         assert_eq!(buf.read_line(&mut v).unwrap(), 1);
2045         assert_eq!(v, "\n");
2046         v.truncate(0);
2047         assert_eq!(buf.read_line(&mut v).unwrap(), 0);
2048         assert_eq!(v, "");
2049     }
2050 
2051     #[test]
2052     fn lines() {
2053         let buf = Cursor::new(&b"12\r"[..]);
2054         let mut s = buf.lines();
2055         assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string());
2056         assert!(s.next().is_none());
2057 
2058         let buf = Cursor::new(&b"12\r\n\n"[..]);
2059         let mut s = buf.lines();
2060         assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
2061         assert_eq!(s.next().unwrap().unwrap(), "".to_string());
2062         assert!(s.next().is_none());
2063     }
2064 
2065     #[test]
2066     fn read_to_end() {
2067         let mut c = Cursor::new(&b""[..]);
2068         let mut v = Vec::new();
2069         assert_eq!(c.read_to_end(&mut v).unwrap(), 0);
2070         assert_eq!(v, []);
2071 
2072         let mut c = Cursor::new(&b"1"[..]);
2073         let mut v = Vec::new();
2074         assert_eq!(c.read_to_end(&mut v).unwrap(), 1);
2075         assert_eq!(v, b"1");
2076 
2077         let cap = 1024 * 1024;
2078         let data = (0..cap).map(|i| (i / 3) as u8).collect::<Vec<_>>();
2079         let mut v = Vec::new();
2080         let (a, b) = data.split_at(data.len() / 2);
2081         assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len());
2082         assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len());
2083         assert_eq!(v, data);
2084     }
2085 
2086     #[test]
2087     fn read_to_string() {
2088         let mut c = Cursor::new(&b""[..]);
2089         let mut v = String::new();
2090         assert_eq!(c.read_to_string(&mut v).unwrap(), 0);
2091         assert_eq!(v, "");
2092 
2093         let mut c = Cursor::new(&b"1"[..]);
2094         let mut v = String::new();
2095         assert_eq!(c.read_to_string(&mut v).unwrap(), 1);
2096         assert_eq!(v, "1");
2097 
2098         let mut c = Cursor::new(&b"\xff"[..]);
2099         let mut v = String::new();
2100         assert!(c.read_to_string(&mut v).is_err());
2101     }
2102 
2103     #[test]
2104     fn read_exact() {
2105         let mut buf = [0; 4];
2106 
2107         let mut c = Cursor::new(&b""[..]);
2108         assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(),
2109                    io::ErrorKind::UnexpectedEof);
2110 
2111         let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..]));
2112         c.read_exact(&mut buf).unwrap();
2113         assert_eq!(&buf, b"1234");
2114         c.read_exact(&mut buf).unwrap();
2115         assert_eq!(&buf, b"5678");
2116         assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(),
2117                    io::ErrorKind::UnexpectedEof);
2118     }
2119 
2120     #[test]
2121     fn read_exact_slice() {
2122         let mut buf = [0; 4];
2123 
2124         let mut c = &b""[..];
2125         assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(),
2126                    io::ErrorKind::UnexpectedEof);
2127 
2128         let mut c = &b"123"[..];
2129         assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(),
2130                    io::ErrorKind::UnexpectedEof);
2131         // make sure the optimized (early returning) method is being used
2132         assert_eq!(&buf, &[0; 4]);
2133 
2134         let mut c = &b"1234"[..];
2135         c.read_exact(&mut buf).unwrap();
2136         assert_eq!(&buf, b"1234");
2137 
2138         let mut c = &b"56789"[..];
2139         c.read_exact(&mut buf).unwrap();
2140         assert_eq!(&buf, b"5678");
2141         assert_eq!(c, b"9");
2142     }
2143 
2144     #[test]
2145     fn take_eof() {
2146         struct R;
2147 
2148         impl Read for R {
2149             fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
2150                 Err(io::Error::new(io::ErrorKind::Other, ""))
2151             }
2152         }
2153         impl BufRead for R {
2154             fn fill_buf(&mut self) -> io::Result<&[u8]> {
2155                 Err(io::Error::new(io::ErrorKind::Other, ""))
2156             }
2157             fn consume(&mut self, _amt: usize) { }
2158         }
2159 
2160         let mut buf = [0; 1];
2161         assert_eq!(0, R.take(0).read(&mut buf).unwrap());
2162         assert_eq!(b"", R.take(0).fill_buf().unwrap());
2163     }
2164 
2165     fn cmp_bufread<Br1: BufRead, Br2: BufRead>(mut br1: Br1, mut br2: Br2, exp: &[u8]) {
2166         let mut cat = Vec::new();
2167         loop {
2168             let consume = {
2169                 let buf1 = br1.fill_buf().unwrap();
2170                 let buf2 = br2.fill_buf().unwrap();
2171                 let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() };
2172                 assert_eq!(buf1[..minlen], buf2[..minlen]);
2173                 cat.extend_from_slice(&buf1[..minlen]);
2174                 minlen
2175             };
2176             if consume == 0 {
2177                 break;
2178             }
2179             br1.consume(consume);
2180             br2.consume(consume);
2181         }
2182         assert_eq!(br1.fill_buf().unwrap().len(), 0);
2183         assert_eq!(br2.fill_buf().unwrap().len(), 0);
2184         assert_eq!(&cat[..], &exp[..])
2185     }
2186 
2187     #[test]
2188     fn chain_bufread() {
2189         let testdata = b"ABCDEFGHIJKL";
2190         let chain1 = (&testdata[..3]).chain(&testdata[3..6])
2191                                      .chain(&testdata[6..9])
2192                                      .chain(&testdata[9..]);
2193         let chain2 = (&testdata[..4]).chain(&testdata[4..8])
2194                                      .chain(&testdata[8..]);
2195         cmp_bufread(chain1, chain2, &testdata[..]);
2196     }
2197 
2198     #[test]
2199     fn chain_zero_length_read_is_not_eof() {
2200         let a = b"A";
2201         let b = b"B";
2202         let mut s = String::new();
2203         let mut chain = (&a[..]).chain(&b[..]);
2204         chain.read(&mut []).unwrap();
2205         chain.read_to_string(&mut s).unwrap();
2206         assert_eq!("AB", s);
2207     }
2208 
2209     #[bench]
2210     #[cfg_attr(target_os = "emscripten", ignore)]
2211     fn bench_read_to_end(b: &mut test::Bencher) {
2212         b.iter(|| {
2213             let mut lr = repeat(1).take(10000000);
2214             let mut vec = Vec::with_capacity(1024);
2215             super::read_to_end(&mut lr, &mut vec)
2216         });
2217     }
2218 }
2219