xref: /relibc/openlibm/ld128/e_log10l.c (revision d07820351bed7d16f1f0a1ae0596a2e2b6f50aaf)
1 /*	$OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							log10l.c
20  *
21  *	Common logarithm, 128-bit long double precision
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, log10l();
28  *
29  * y = log10l( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns the base 10 logarithm of x.
36  *
37  * The argument is separated into its exponent and fractional
38  * parts.  If the exponent is between -1 and +1, the logarithm
39  * of the fraction is approximated by
40  *
41  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
42  *
43  * Otherwise, setting  z = 2(x-1)/x+1),
44  *
45  *     log(x) = z + z^3 P(z)/Q(z).
46  *
47  *
48  *
49  * ACCURACY:
50  *
51  *                      Relative error:
52  * arithmetic   domain     # trials      peak         rms
53  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
54  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
55  *
56  * In the tests over the interval exp(+-10000), the logarithms
57  * of the random arguments were uniformly distributed over
58  * [-10000, +10000].
59  *
60  */
61 
62 #include <openlibm.h>
63 
64 #include "math_private.h"
65 
66 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67  * 1/sqrt(2) <= x < sqrt(2)
68  * Theoretical peak relative error = 5.3e-37,
69  * relative peak error spread = 2.3e-14
70  */
71 static const long double P[13] =
72 {
73   1.313572404063446165910279910527789794488E4L,
74   7.771154681358524243729929227226708890930E4L,
75   2.014652742082537582487669938141683759923E5L,
76   3.007007295140399532324943111654767187848E5L,
77   2.854829159639697837788887080758954924001E5L,
78   1.797628303815655343403735250238293741397E5L,
79   7.594356839258970405033155585486712125861E4L,
80   2.128857716871515081352991964243375186031E4L,
81   3.824952356185897735160588078446136783779E3L,
82   4.114517881637811823002128927449878962058E2L,
83   2.321125933898420063925789532045674660756E1L,
84   4.998469661968096229986658302195402690910E-1L,
85   1.538612243596254322971797716843006400388E-6L
86 };
87 static const long double Q[12] =
88 {
89   3.940717212190338497730839731583397586124E4L,
90   2.626900195321832660448791748036714883242E5L,
91   7.777690340007566932935753241556479363645E5L,
92   1.347518538384329112529391120390701166528E6L,
93   1.514882452993549494932585972882995548426E6L,
94   1.158019977462989115839826904108208787040E6L,
95   6.132189329546557743179177159925690841200E5L,
96   2.248234257620569139969141618556349415120E5L,
97   5.605842085972455027590989944010492125825E4L,
98   9.147150349299596453976674231612674085381E3L,
99   9.104928120962988414618126155557301584078E2L,
100   4.839208193348159620282142911143429644326E1L
101 /* 1.000000000000000000000000000000000000000E0L, */
102 };
103 
104 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105  * where z = 2(x-1)/(x+1)
106  * 1/sqrt(2) <= x < sqrt(2)
107  * Theoretical peak relative error = 1.1e-35,
108  * relative peak error spread 1.1e-9
109  */
110 static const long double R[6] =
111 {
112   1.418134209872192732479751274970992665513E5L,
113  -8.977257995689735303686582344659576526998E4L,
114   2.048819892795278657810231591630928516206E4L,
115  -2.024301798136027039250415126250455056397E3L,
116   8.057002716646055371965756206836056074715E1L,
117  -8.828896441624934385266096344596648080902E-1L
118 };
119 static const long double S[6] =
120 {
121   1.701761051846631278975701529965589676574E6L,
122  -1.332535117259762928288745111081235577029E6L,
123   4.001557694070773974936904547424676279307E5L,
124  -5.748542087379434595104154610899551484314E4L,
125   3.998526750980007367835804959888064681098E3L,
126  -1.186359407982897997337150403816839480438E2L
127 /* 1.000000000000000000000000000000000000000E0L, */
128 };
129 
130 static const long double
131 /* log10(2) */
132 L102A = 0.3125L,
133 L102B = -1.14700043360188047862611052755069732318101185E-2L,
134 /* log10(e) */
135 L10EA = 0.5L,
136 L10EB = -6.570551809674817234887108108339491770560299E-2L,
137 /* sqrt(2)/2 */
138 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
139 
140 
141 
142 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
143 
144 static long double
145 neval (long double x, const long double *p, int n)
146 {
147   long double y;
148 
149   p += n;
150   y = *p--;
151   do
152     {
153       y = y * x + *p--;
154     }
155   while (--n > 0);
156   return y;
157 }
158 
159 
160 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
161 
162 static long double
163 deval (long double x, const long double *p, int n)
164 {
165   long double y;
166 
167   p += n;
168   y = x + *p--;
169   do
170     {
171       y = y * x + *p--;
172     }
173   while (--n > 0);
174   return y;
175 }
176 
177 
178 
179 long double
180 log10l(long double x)
181 {
182   long double z;
183   long double y;
184   int e;
185   int64_t hx, lx;
186 
187 /* Test for domain */
188   GET_LDOUBLE_WORDS64 (hx, lx, x);
189   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
190     return (-1.0L / (x - x));
191   if (hx < 0)
192     return (x - x) / (x - x);
193   if (hx >= 0x7fff000000000000LL)
194     return (x + x);
195 
196 /* separate mantissa from exponent */
197 
198 /* Note, frexp is used so that denormal numbers
199  * will be handled properly.
200  */
201   x = frexpl (x, &e);
202 
203 
204 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
205  * where z = 2(x-1)/x+1)
206  */
207   if ((e > 2) || (e < -2))
208     {
209       if (x < SQRTH)
210 	{			/* 2( 2x-1 )/( 2x+1 ) */
211 	  e -= 1;
212 	  z = x - 0.5L;
213 	  y = 0.5L * z + 0.5L;
214 	}
215       else
216 	{			/*  2 (x-1)/(x+1)   */
217 	  z = x - 0.5L;
218 	  z -= 0.5L;
219 	  y = 0.5L * x + 0.5L;
220 	}
221       x = z / y;
222       z = x * x;
223       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
224       goto done;
225     }
226 
227 
228 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
229 
230   if (x < SQRTH)
231     {
232       e -= 1;
233       x = 2.0 * x - 1.0L;	/*  2x - 1  */
234     }
235   else
236     {
237       x = x - 1.0L;
238     }
239   z = x * x;
240   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
241   y = y - 0.5 * z;
242 
243 done:
244 
245   /* Multiply log of fraction by log10(e)
246    * and base 2 exponent by log10(2).
247    */
248   z = y * L10EB;
249   z += x * L10EB;
250   z += e * L102B;
251   z += y * L10EA;
252   z += x * L10EA;
253   z += e * L102A;
254   return (z);
255 }
256