xref: /relibc/openlibm/ld128/e_logl.c (revision beb387c4b293b36e4c6a5bf2036887998454a7d6)
1 /*	$OpenBSD: e_logl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							logl.c
20  *
21  * Natural logarithm for 128-bit long double precision.
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, logl();
28  *
29  * y = logl( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns the base e (2.718...) logarithm of x.
36  *
37  * The argument is separated into its exponent and fractional
38  * parts.  Use of a lookup table increases the speed of the routine.
39  * The program uses logarithms tabulated at intervals of 1/128 to
40  * cover the domain from approximately 0.7 to 1.4.
41  *
42  * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
43  *     log(1+x) = x - 0.5 x^2 + x^3 P(x) .
44  *
45  *
46  *
47  * ACCURACY:
48  *
49  *                      Relative error:
50  * arithmetic   domain     # trials      peak         rms
51  *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35
52  *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35
53  *
54  *
55  * WARNING:
56  *
57  * This program uses integer operations on bit fields of floating-point
58  * numbers.  It does not work with data structures other than the
59  * structure assumed.
60  *
61  */
62 
63 #include <openlibm.h>
64 
65 #include "math_private.h"
66 
67 /* log(1+x) = x - .5 x^2 + x^3 l(x)
68    -.0078125 <= x <= +.0078125
69    peak relative error 1.2e-37 */
70 static const long double
71 l3 =   3.333333333333333333333333333333336096926E-1L,
72 l4 =  -2.499999999999999999999999999486853077002E-1L,
73 l5 =   1.999999999999999999999999998515277861905E-1L,
74 l6 =  -1.666666666666666666666798448356171665678E-1L,
75 l7 =   1.428571428571428571428808945895490721564E-1L,
76 l8 =  -1.249999999999999987884655626377588149000E-1L,
77 l9 =   1.111111111111111093947834982832456459186E-1L,
78 l10 = -1.000000000000532974938900317952530453248E-1L,
79 l11 =  9.090909090915566247008015301349979892689E-2L,
80 l12 = -8.333333211818065121250921925397567745734E-2L,
81 l13 =  7.692307559897661630807048686258659316091E-2L,
82 l14 = -7.144242754190814657241902218399056829264E-2L,
83 l15 =  6.668057591071739754844678883223432347481E-2L;
84 
85 /* Lookup table of ln(t) - (t-1)
86     t = 0.5 + (k+26)/128)
87     k = 0, ..., 91   */
88 static const long double logtbl[92] = {
89 -5.5345593589352099112142921677820359632418E-2L,
90 -5.2108257402767124761784665198737642086148E-2L,
91 -4.8991686870576856279407775480686721935120E-2L,
92 -4.5993270766361228596215288742353061431071E-2L,
93 -4.3110481649613269682442058976885699556950E-2L,
94 -4.0340872319076331310838085093194799765520E-2L,
95 -3.7682072451780927439219005993827431503510E-2L,
96 -3.5131785416234343803903228503274262719586E-2L,
97 -3.2687785249045246292687241862699949178831E-2L,
98 -3.0347913785027239068190798397055267411813E-2L,
99 -2.8110077931525797884641940838507561326298E-2L,
100 -2.5972247078357715036426583294246819637618E-2L,
101 -2.3932450635346084858612873953407168217307E-2L,
102 -2.1988775689981395152022535153795155900240E-2L,
103 -2.0139364778244501615441044267387667496733E-2L,
104 -1.8382413762093794819267536615342902718324E-2L,
105 -1.6716169807550022358923589720001638093023E-2L,
106 -1.5138929457710992616226033183958974965355E-2L,
107 -1.3649036795397472900424896523305726435029E-2L,
108 -1.2244881690473465543308397998034325468152E-2L,
109 -1.0924898127200937840689817557742469105693E-2L,
110 -9.6875626072830301572839422532631079809328E-3L,
111 -8.5313926245226231463436209313499745894157E-3L,
112 -7.4549452072765973384933565912143044991706E-3L,
113 -6.4568155251217050991200599386801665681310E-3L,
114 -5.5356355563671005131126851708522185605193E-3L,
115 -4.6900728132525199028885749289712348829878E-3L,
116 -3.9188291218610470766469347968659624282519E-3L,
117 -3.2206394539524058873423550293617843896540E-3L,
118 -2.5942708080877805657374888909297113032132E-3L,
119 -2.0385211375711716729239156839929281289086E-3L,
120 -1.5522183228760777967376942769773768850872E-3L,
121 -1.1342191863606077520036253234446621373191E-3L,
122 -7.8340854719967065861624024730268350459991E-4L,
123 -4.9869831458030115699628274852562992756174E-4L,
124 -2.7902661731604211834685052867305795169688E-4L,
125 -1.2335696813916860754951146082826952093496E-4L,
126 -3.0677461025892873184042490943581654591817E-5L,
127 #define ZERO logtbl[38]
128  0.0000000000000000000000000000000000000000E0L,
129 -3.0359557945051052537099938863236321874198E-5L,
130 -1.2081346403474584914595395755316412213151E-4L,
131 -2.7044071846562177120083903771008342059094E-4L,
132 -4.7834133324631162897179240322783590830326E-4L,
133 -7.4363569786340080624467487620270965403695E-4L,
134 -1.0654639687057968333207323853366578860679E-3L,
135 -1.4429854811877171341298062134712230604279E-3L,
136 -1.8753781835651574193938679595797367137975E-3L,
137 -2.3618380914922506054347222273705859653658E-3L,
138 -2.9015787624124743013946600163375853631299E-3L,
139 -3.4938307889254087318399313316921940859043E-3L,
140 -4.1378413103128673800485306215154712148146E-3L,
141 -4.8328735414488877044289435125365629849599E-3L,
142 -5.5782063183564351739381962360253116934243E-3L,
143 -6.3731336597098858051938306767880719015261E-3L,
144 -7.2169643436165454612058905294782949315193E-3L,
145 -8.1090214990427641365934846191367315083867E-3L,
146 -9.0486422112807274112838713105168375482480E-3L,
147 -1.0035177140880864314674126398350812606841E-2L,
148 -1.1067990155502102718064936259435676477423E-2L,
149 -1.2146457974158024928196575103115488672416E-2L,
150 -1.3269969823361415906628825374158424754308E-2L,
151 -1.4437927104692837124388550722759686270765E-2L,
152 -1.5649743073340777659901053944852735064621E-2L,
153 -1.6904842527181702880599758489058031645317E-2L,
154 -1.8202661505988007336096407340750378994209E-2L,
155 -1.9542647000370545390701192438691126552961E-2L,
156 -2.0924256670080119637427928803038530924742E-2L,
157 -2.2346958571309108496179613803760727786257E-2L,
158 -2.3810230892650362330447187267648486279460E-2L,
159 -2.5313561699385640380910474255652501521033E-2L,
160 -2.6856448685790244233704909690165496625399E-2L,
161 -2.8438398935154170008519274953860128449036E-2L,
162 -3.0058928687233090922411781058956589863039E-2L,
163 -3.1717563112854831855692484086486099896614E-2L,
164 -3.3413836095418743219397234253475252001090E-2L,
165 -3.5147290019036555862676702093393332533702E-2L,
166 -3.6917475563073933027920505457688955423688E-2L,
167 -3.8723951502862058660874073462456610731178E-2L,
168 -4.0566284516358241168330505467000838017425E-2L,
169 -4.2444048996543693813649967076598766917965E-2L,
170 -4.4356826869355401653098777649745233339196E-2L,
171 -4.6304207416957323121106944474331029996141E-2L,
172 -4.8285787106164123613318093945035804818364E-2L,
173 -5.0301169421838218987124461766244507342648E-2L,
174 -5.2349964705088137924875459464622098310997E-2L,
175 -5.4431789996103111613753440311680967840214E-2L,
176 -5.6546268881465384189752786409400404404794E-2L,
177 -5.8693031345788023909329239565012647817664E-2L,
178 -6.0871713627532018185577188079210189048340E-2L,
179 -6.3081958078862169742820420185833800925568E-2L,
180 -6.5323413029406789694910800219643791556918E-2L,
181 -6.7595732653791419081537811574227049288168E-2L
182 };
183 
184 /* ln(2) = ln2a + ln2b with extended precision. */
185 static const long double
186   ln2a = 6.93145751953125e-1L,
187   ln2b = 1.4286068203094172321214581765680755001344E-6L;
188 
189 long double
190 logl(long double x)
191 {
192   long double z, y, w;
193   ieee_quad_shape_type u, t;
194   unsigned int m;
195   int k, e;
196 
197   u.value = x;
198   m = u.parts32.mswhi;
199 
200   /* Check for IEEE special cases.  */
201   k = m & 0x7fffffff;
202   /* log(0) = -infinity. */
203   if ((k | u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
204     {
205       return -0.5L / ZERO;
206     }
207   /* log ( x < 0 ) = NaN */
208   if (m & 0x80000000)
209     {
210       return (x - x) / ZERO;
211     }
212   /* log (infinity or NaN) */
213   if (k >= 0x7fff0000)
214     {
215       return x + x;
216     }
217 
218   /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */
219   e = (int) (m >> 16) - (int) 0x3ffe;
220   m &= 0xffff;
221   u.parts32.mswhi = m | 0x3ffe0000;
222   m |= 0x10000;
223   /* Find lookup table index k from high order bits of the significand. */
224   if (m < 0x16800)
225     {
226       k = (m - 0xff00) >> 9;
227       /* t is the argument 0.5 + (k+26)/128
228 	 of the nearest item to u in the lookup table.  */
229       t.parts32.mswhi = 0x3fff0000 + (k << 9);
230       t.parts32.mswlo = 0;
231       t.parts32.lswhi = 0;
232       t.parts32.lswlo = 0;
233       u.parts32.mswhi += 0x10000;
234       e -= 1;
235       k += 64;
236     }
237   else
238     {
239       k = (m - 0xfe00) >> 10;
240       t.parts32.mswhi = 0x3ffe0000 + (k << 10);
241       t.parts32.mswlo = 0;
242       t.parts32.lswhi = 0;
243       t.parts32.lswlo = 0;
244     }
245   /* On this interval the table is not used due to cancellation error.  */
246   if ((x <= 1.0078125L) && (x >= 0.9921875L))
247     {
248       z = x - 1.0L;
249       k = 64;
250       t.value  = 1.0L;
251       e = 0;
252     }
253   else
254     {
255       /* log(u) = log( t u/t ) = log(t) + log(u/t)
256 	 log(t) is tabulated in the lookup table.
257 	 Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.
258 	cf. Cody & Waite. */
259       z = (u.value - t.value) / t.value;
260     }
261   /* Series expansion of log(1+z).  */
262   w = z * z;
263   y = ((((((((((((l15 * z
264 		  + l14) * z
265 		 + l13) * z
266 		+ l12) * z
267 	       + l11) * z
268 	      + l10) * z
269 	     + l9) * z
270 	    + l8) * z
271 	   + l7) * z
272 	  + l6) * z
273 	 + l5) * z
274 	+ l4) * z
275        + l3) * z * w;
276   y -= 0.5 * w;
277   y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */
278   y += z;
279   y += logtbl[k-26]; /* log(t) - (t-1) */
280   y += (t.value - 1.0L);
281   y += e * ln2a;
282   return y;
283 }
284