xref: /relibc/openlibm/ld128/s_log1pl.c (revision beb387c4b293b36e4c6a5bf2036887998454a7d6)
1 /*	$OpenBSD: s_log1pl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							log1pl.c
20  *
21  *      Relative error logarithm
22  *	Natural logarithm of 1+x, 128-bit long double precision
23  *
24  *
25  *
26  * SYNOPSIS:
27  *
28  * long double x, y, log1pl();
29  *
30  * y = log1pl( x );
31  *
32  *
33  *
34  * DESCRIPTION:
35  *
36  * Returns the base e (2.718...) logarithm of 1+x.
37  *
38  * The argument 1+x is separated into its exponent and fractional
39  * parts.  If the exponent is between -1 and +1, the logarithm
40  * of the fraction is approximated by
41  *
42  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
43  *
44  * Otherwise, setting  z = 2(w-1)/(w+1),
45  *
46  *     log(w) = z + z^3 P(z)/Q(z).
47  *
48  *
49  *
50  * ACCURACY:
51  *
52  *                      Relative error:
53  * arithmetic   domain     # trials      peak         rms
54  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
55  */
56 
57 #include <openlibm.h>
58 
59 #include "math_private.h"
60 
61 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
62  * 1/sqrt(2) <= 1+x < sqrt(2)
63  * Theoretical peak relative error = 5.3e-37,
64  * relative peak error spread = 2.3e-14
65  */
66 static const long double
67   P12 = 1.538612243596254322971797716843006400388E-6L,
68   P11 = 4.998469661968096229986658302195402690910E-1L,
69   P10 = 2.321125933898420063925789532045674660756E1L,
70   P9 = 4.114517881637811823002128927449878962058E2L,
71   P8 = 3.824952356185897735160588078446136783779E3L,
72   P7 = 2.128857716871515081352991964243375186031E4L,
73   P6 = 7.594356839258970405033155585486712125861E4L,
74   P5 = 1.797628303815655343403735250238293741397E5L,
75   P4 = 2.854829159639697837788887080758954924001E5L,
76   P3 = 3.007007295140399532324943111654767187848E5L,
77   P2 = 2.014652742082537582487669938141683759923E5L,
78   P1 = 7.771154681358524243729929227226708890930E4L,
79   P0 = 1.313572404063446165910279910527789794488E4L,
80   /* Q12 = 1.000000000000000000000000000000000000000E0L, */
81   Q11 = 4.839208193348159620282142911143429644326E1L,
82   Q10 = 9.104928120962988414618126155557301584078E2L,
83   Q9 = 9.147150349299596453976674231612674085381E3L,
84   Q8 = 5.605842085972455027590989944010492125825E4L,
85   Q7 = 2.248234257620569139969141618556349415120E5L,
86   Q6 = 6.132189329546557743179177159925690841200E5L,
87   Q5 = 1.158019977462989115839826904108208787040E6L,
88   Q4 = 1.514882452993549494932585972882995548426E6L,
89   Q3 = 1.347518538384329112529391120390701166528E6L,
90   Q2 = 7.777690340007566932935753241556479363645E5L,
91   Q1 = 2.626900195321832660448791748036714883242E5L,
92   Q0 = 3.940717212190338497730839731583397586124E4L;
93 
94 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
95  * where z = 2(x-1)/(x+1)
96  * 1/sqrt(2) <= x < sqrt(2)
97  * Theoretical peak relative error = 1.1e-35,
98  * relative peak error spread 1.1e-9
99  */
100 static const long double
101   R5 = -8.828896441624934385266096344596648080902E-1L,
102   R4 = 8.057002716646055371965756206836056074715E1L,
103   R3 = -2.024301798136027039250415126250455056397E3L,
104   R2 = 2.048819892795278657810231591630928516206E4L,
105   R1 = -8.977257995689735303686582344659576526998E4L,
106   R0 = 1.418134209872192732479751274970992665513E5L,
107   /* S6 = 1.000000000000000000000000000000000000000E0L, */
108   S5 = -1.186359407982897997337150403816839480438E2L,
109   S4 = 3.998526750980007367835804959888064681098E3L,
110   S3 = -5.748542087379434595104154610899551484314E4L,
111   S2 = 4.001557694070773974936904547424676279307E5L,
112   S1 = -1.332535117259762928288745111081235577029E6L,
113   S0 = 1.701761051846631278975701529965589676574E6L;
114 
115 /* C1 + C2 = ln 2 */
116 static const long double C1 = 6.93145751953125E-1L;
117 static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
118 
119 static const long double sqrth = 0.7071067811865475244008443621048490392848L;
120 /* ln (2^16384 * (1 - 2^-113)) */
121 static const long double zero = 0.0L;
122 
123 long double
124 log1pl(long double xm1)
125 {
126   long double x, y, z, r, s;
127   ieee_quad_shape_type u;
128   int32_t hx;
129   int e;
130 
131   /* Test for NaN or infinity input. */
132   u.value = xm1;
133   hx = u.parts32.mswhi;
134   if (hx >= 0x7fff0000)
135     return xm1;
136 
137   /* log1p(+- 0) = +- 0.  */
138   if (((hx & 0x7fffffff) == 0)
139       && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
140     return xm1;
141 
142   x = xm1 + 1.0L;
143 
144   /* log1p(-1) = -inf */
145   if (x <= 0.0L)
146     {
147       if (x == 0.0L)
148 	return (-1.0L / (x - x));
149       else
150 	return (zero / (x - x));
151     }
152 
153   /* Separate mantissa from exponent.  */
154 
155   /* Use frexp used so that denormal numbers will be handled properly.  */
156   x = frexpl (x, &e);
157 
158   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
159      where z = 2(x-1)/x+1).  */
160   if ((e > 2) || (e < -2))
161     {
162       if (x < sqrth)
163 	{			/* 2( 2x-1 )/( 2x+1 ) */
164 	  e -= 1;
165 	  z = x - 0.5L;
166 	  y = 0.5L * z + 0.5L;
167 	}
168       else
169 	{			/*  2 (x-1)/(x+1)   */
170 	  z = x - 0.5L;
171 	  z -= 0.5L;
172 	  y = 0.5L * x + 0.5L;
173 	}
174       x = z / y;
175       z = x * x;
176       r = ((((R5 * z
177 	      + R4) * z
178 	     + R3) * z
179 	    + R2) * z
180 	   + R1) * z
181 	+ R0;
182       s = (((((z
183 	       + S5) * z
184 	      + S4) * z
185 	     + S3) * z
186 	    + S2) * z
187 	   + S1) * z
188 	+ S0;
189       z = x * (z * r / s);
190       z = z + e * C2;
191       z = z + x;
192       z = z + e * C1;
193       return (z);
194     }
195 
196 
197   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
198 
199   if (x < sqrth)
200     {
201       e -= 1;
202       if (e != 0)
203 	x = 2.0L * x - 1.0L;	/*  2x - 1  */
204       else
205 	x = xm1;
206     }
207   else
208     {
209       if (e != 0)
210 	x = x - 1.0L;
211       else
212 	x = xm1;
213     }
214   z = x * x;
215   r = (((((((((((P12 * x
216 		 + P11) * x
217 		+ P10) * x
218 	       + P9) * x
219 	      + P8) * x
220 	     + P7) * x
221 	    + P6) * x
222 	   + P5) * x
223 	  + P4) * x
224 	 + P3) * x
225 	+ P2) * x
226        + P1) * x
227     + P0;
228   s = (((((((((((x
229 		 + Q11) * x
230 		+ Q10) * x
231 	       + Q9) * x
232 	      + Q8) * x
233 	     + Q7) * x
234 	    + Q6) * x
235 	   + Q5) * x
236 	  + Q4) * x
237 	 + Q3) * x
238 	+ Q2) * x
239        + Q1) * x
240     + Q0;
241   y = x * (z * r / s);
242   y = y + e * C2;
243   z = y - 0.5L * z;
244   z = z + x;
245   z = z + e * C1;
246   return (z);
247 }
248