xref: /relibc/openlibm/ld80/e_tgammal.c (revision b6cd89849e57f0caebcd4e45408b62d2004e6e4e)
1 /*	$OpenBSD: e_tgammal.c,v 1.4 2013/11/12 20:35:19 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							tgammal.c
20  *
21  *	Gamma function
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, tgammal();
28  *
29  * y = tgammal( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns gamma function of the argument.  The result is correctly
36  * signed.  This variable is also filled in by the logarithmic gamma
37  * function lgamma().
38  *
39  * Arguments |x| <= 13 are reduced by recurrence and the function
40  * approximated by a rational function of degree 7/8 in the
41  * interval (2,3).  Large arguments are handled by Stirling's
42  * formula. Large negative arguments are made positive using
43  * a reflection formula.
44  *
45  *
46  * ACCURACY:
47  *
48  *                      Relative error:
49  * arithmetic   domain     # trials      peak         rms
50  *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
51  *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
52  *
53  * Accuracy for large arguments is dominated by error in powl().
54  *
55  */
56 
57 #include <float.h>
58 #include <openlibm.h>
59 
60 #include "math_private.h"
61 
62 /*
63 tgamma(x+2)  = tgamma(x+2) P(x)/Q(x)
64 0 <= x <= 1
65 Relative error
66 n=7, d=8
67 Peak error =  1.83e-20
68 Relative error spread =  8.4e-23
69 */
70 
71 static long double P[8] = {
72  4.212760487471622013093E-5L,
73  4.542931960608009155600E-4L,
74  4.092666828394035500949E-3L,
75  2.385363243461108252554E-2L,
76  1.113062816019361559013E-1L,
77  3.629515436640239168939E-1L,
78  8.378004301573126728826E-1L,
79  1.000000000000000000009E0L,
80 };
81 static long double Q[9] = {
82 -1.397148517476170440917E-5L,
83  2.346584059160635244282E-4L,
84 -1.237799246653152231188E-3L,
85 -7.955933682494738320586E-4L,
86  2.773706565840072979165E-2L,
87 -4.633887671244534213831E-2L,
88 -2.243510905670329164562E-1L,
89  4.150160950588455434583E-1L,
90  9.999999999999999999908E-1L,
91 };
92 
93 /*
94 static long double P[] = {
95 -3.01525602666895735709e0L,
96 -3.25157411956062339893e1L,
97 -2.92929976820724030353e2L,
98 -1.70730828800510297666e3L,
99 -7.96667499622741999770e3L,
100 -2.59780216007146401957e4L,
101 -5.99650230220855581642e4L,
102 -7.15743521530849602425e4L
103 };
104 static long double Q[] = {
105  1.00000000000000000000e0L,
106 -1.67955233807178858919e1L,
107  8.85946791747759881659e1L,
108  5.69440799097468430177e1L,
109 -1.98526250512761318471e3L,
110  3.31667508019495079814e3L,
111  1.60577839621734713377e4L,
112 -2.97045081369399940529e4L,
113 -7.15743521530849602412e4L
114 };
115 */
116 #define MAXGAML 1755.455L
117 /*static const long double LOGPI = 1.14472988584940017414L;*/
118 
119 /* Stirling's formula for the gamma function
120 tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
121 z(x) = x
122 13 <= x <= 1024
123 Relative error
124 n=8, d=0
125 Peak error =  9.44e-21
126 Relative error spread =  8.8e-4
127 */
128 
129 static long double STIR[9] = {
130  7.147391378143610789273E-4L,
131 -2.363848809501759061727E-5L,
132 -5.950237554056330156018E-4L,
133  6.989332260623193171870E-5L,
134  7.840334842744753003862E-4L,
135 -2.294719747873185405699E-4L,
136 -2.681327161876304418288E-3L,
137  3.472222222230075327854E-3L,
138  8.333333333333331800504E-2L,
139 };
140 
141 #define MAXSTIR 1024.0L
142 static const long double SQTPI = 2.50662827463100050242E0L;
143 
144 /* 1/tgamma(x) = z P(z)
145  * z(x) = 1/x
146  * 0 < x < 0.03125
147  * Peak relative error 4.2e-23
148  */
149 
150 static long double S[9] = {
151 -1.193945051381510095614E-3L,
152  7.220599478036909672331E-3L,
153 -9.622023360406271645744E-3L,
154 -4.219773360705915470089E-2L,
155  1.665386113720805206758E-1L,
156 -4.200263503403344054473E-2L,
157 -6.558780715202540684668E-1L,
158  5.772156649015328608253E-1L,
159  1.000000000000000000000E0L,
160 };
161 
162 /* 1/tgamma(-x) = z P(z)
163  * z(x) = 1/x
164  * 0 < x < 0.03125
165  * Peak relative error 5.16e-23
166  * Relative error spread =  2.5e-24
167  */
168 
169 static long double SN[9] = {
170  1.133374167243894382010E-3L,
171  7.220837261893170325704E-3L,
172  9.621911155035976733706E-3L,
173 -4.219773343731191721664E-2L,
174 -1.665386113944413519335E-1L,
175 -4.200263503402112910504E-2L,
176  6.558780715202536547116E-1L,
177  5.772156649015328608727E-1L,
178 -1.000000000000000000000E0L,
179 };
180 
181 static const long double PIL = 3.1415926535897932384626L;
182 
183 static long double stirf ( long double );
184 
185 /* Gamma function computed by Stirling's formula.
186  */
187 static long double stirf(long double x)
188 {
189 long double y, w, v;
190 
191 w = 1.0L/x;
192 /* For large x, use rational coefficients from the analytical expansion.  */
193 if( x > 1024.0L )
194 	w = (((((6.97281375836585777429E-5L * w
195 		+ 7.84039221720066627474E-4L) * w
196 		- 2.29472093621399176955E-4L) * w
197 		- 2.68132716049382716049E-3L) * w
198 		+ 3.47222222222222222222E-3L) * w
199 		+ 8.33333333333333333333E-2L) * w
200 		+ 1.0L;
201 else
202 	w = 1.0L + w * __polevll( w, STIR, 8 );
203 y = expl(x);
204 if( x > MAXSTIR )
205 	{ /* Avoid overflow in pow() */
206 	v = powl( x, 0.5L * x - 0.25L );
207 	y = v * (v / y);
208 	}
209 else
210 	{
211 	y = powl( x, x - 0.5L ) / y;
212 	}
213 y = SQTPI * y * w;
214 return( y );
215 }
216 
217 long double
218 tgammal(long double x)
219 {
220 long double p, q, z;
221 int i;
222 
223 if( isnan(x) )
224 	return(NAN);
225 if(x == INFINITY)
226 	return(INFINITY);
227 if(x == -INFINITY)
228 	return(x - x);
229 if( x == 0.0L )
230 	return( 1.0L / x );
231 q = fabsl(x);
232 
233 if( q > 13.0L )
234 	{
235 	int sign = 1;
236 	if( q > MAXGAML )
237 		goto goverf;
238 	if( x < 0.0L )
239 		{
240 		p = floorl(q);
241 		if( p == q )
242 			return (x - x) / (x - x);
243 		i = p;
244 		if( (i & 1) == 0 )
245 			sign = -1;
246 		z = q - p;
247 		if( z > 0.5L )
248 			{
249 			p += 1.0L;
250 			z = q - p;
251 			}
252 		z = q * sinl( PIL * z );
253 		z = fabsl(z) * stirf(q);
254 		if( z <= PIL/LDBL_MAX )
255 			{
256 goverf:
257 			return( sign * INFINITY);
258 			}
259 		z = PIL/z;
260 		}
261 	else
262 		{
263 		z = stirf(x);
264 		}
265 	return( sign * z );
266 	}
267 
268 z = 1.0L;
269 while( x >= 3.0L )
270 	{
271 	x -= 1.0L;
272 	z *= x;
273 	}
274 
275 while( x < -0.03125L )
276 	{
277 	z /= x;
278 	x += 1.0L;
279 	}
280 
281 if( x <= 0.03125L )
282 	goto small;
283 
284 while( x < 2.0L )
285 	{
286 	z /= x;
287 	x += 1.0L;
288 	}
289 
290 if( x == 2.0L )
291 	return(z);
292 
293 x -= 2.0L;
294 p = __polevll( x, P, 7 );
295 q = __polevll( x, Q, 8 );
296 z = z * p / q;
297 return z;
298 
299 small:
300 if( x == 0.0L )
301 	return (x - x) / (x - x);
302 else
303 	{
304 	if( x < 0.0L )
305 		{
306 		x = -x;
307 		q = z / (x * __polevll( x, SN, 8 ));
308 		}
309 	else
310 		q = z / (x * __polevll( x, S, 8 ));
311 	}
312 return q;
313 }
314