xref: /relibc/openlibm/src/e_j0.c (revision d07820351bed7d16f1f0a1ae0596a2e2b6f50aaf)
1 
2 /* @(#)e_j0.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <assert.h>
15 
16 #include "cdefs-compat.h"
17 //__FBSDID("$FreeBSD: src/lib/msun/src/e_j0.c,v 1.9 2008/02/22 02:30:35 das Exp $");
18 
19 /* __ieee754_j0(x), __ieee754_y0(x)
20  * Bessel function of the first and second kinds of order zero.
21  * Method -- j0(x):
22  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
23  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
24  *	   for x in (0,2)
25  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
26  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
27  *	   for x in (2,inf)
28  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
29  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
30  *	   as follow:
31  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
32  *			= 1/sqrt(2) * (cos(x) + sin(x))
33  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
34  *			= 1/sqrt(2) * (sin(x) - cos(x))
35  * 	   (To avoid cancellation, use
36  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
37  * 	    to compute the worse one.)
38  *
39  *	3 Special cases
40  *		j0(nan)= nan
41  *		j0(0) = 1
42  *		j0(inf) = 0
43  *
44  * Method -- y0(x):
45  *	1. For x<2.
46  *	   Since
47  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
48  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
49  *	   We use the following function to approximate y0,
50  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
51  *	   where
52  *		U(z) = u00 + u01*z + ... + u06*z^6
53  *		V(z) = 1  + v01*z + ... + v04*z^4
54  *	   with absolute approximation error bounded by 2**-72.
55  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
56  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
57  *	2. For x>=2.
58  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
59  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
60  *	   by the method mentioned above.
61  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
62  */
63 
64 #include <openlibm.h>
65 
66 #include "math_private.h"
67 
68 static double pzero(double), qzero(double);
69 
70 static const double
71 huge 	= 1e300,
72 one	= 1.0,
73 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
74 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
75  		/* R0/S0 on [0, 2.00] */
76 R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
77 R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
78 R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
79 R05  = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
80 S01  =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
81 S02  =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
82 S03  =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
83 S04  =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
84 
85 static const double zero = 0.0;
86 
87 DLLEXPORT double
88 __ieee754_j0(double x)
89 {
90 	double z, s,c,ss,cc,r,u,v;
91 	int32_t hx,ix;
92 
93 	GET_HIGH_WORD(hx,x);
94 	ix = hx&0x7fffffff;
95 	if(ix>=0x7ff00000) return one/(x*x);
96 	x = fabs(x);
97 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
98 		s = sin(x);
99 		c = cos(x);
100 		ss = s-c;
101 		cc = s+c;
102 		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
103 		    z = -cos(x+x);
104 		    if ((s*c)<zero) cc = z/ss;
105 		    else 	    ss = z/cc;
106 		}
107 	/*
108 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
109 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
110 	 */
111 		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
112 		else {
113 		    u = pzero(x); v = qzero(x);
114 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
115 		}
116 		return z;
117 	}
118 	if(ix<0x3f200000) {	/* |x| < 2**-13 */
119 	    if(huge+x>one) {	/* raise inexact if x != 0 */
120 	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */
121 	        else 	      return one - 0.25*x*x;
122 	    }
123 	}
124 	z = x*x;
125 	r =  z*(R02+z*(R03+z*(R04+z*R05)));
126 	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
127 	if(ix < 0x3FF00000) {	/* |x| < 1.00 */
128 	    return one + z*(-0.25+(r/s));
129 	} else {
130 	    u = 0.5*x;
131 	    return((one+u)*(one-u)+z*(r/s));
132 	}
133 }
134 
135 static const double
136 u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
137 u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
138 u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
139 u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
140 u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
141 u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
142 u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
143 v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
144 v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
145 v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
146 v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
147 
148 DLLEXPORT double
149 __ieee754_y0(double x)
150 {
151 	double z, s,c,ss,cc,u,v;
152 	int32_t hx,ix,lx;
153 
154 	EXTRACT_WORDS(hx,lx,x);
155         ix = 0x7fffffff&hx;
156     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
157 	if(ix>=0x7ff00000) return  one/(x+x*x);
158         if((ix|lx)==0) return -one/zero;
159         if(hx<0) return zero/zero;
160         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
161         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
162          * where x0 = x-pi/4
163          *      Better formula:
164          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
165          *                      =  1/sqrt(2) * (sin(x) + cos(x))
166          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
167          *                      =  1/sqrt(2) * (sin(x) - cos(x))
168          * To avoid cancellation, use
169          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
170          * to compute the worse one.
171          */
172                 s = sin(x);
173                 c = cos(x);
174                 ss = s-c;
175                 cc = s+c;
176 	/*
177 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
178 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
179 	 */
180                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
181                     z = -cos(x+x);
182                     if ((s*c)<zero) cc = z/ss;
183                     else            ss = z/cc;
184                 }
185                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
186                 else {
187                     u = pzero(x); v = qzero(x);
188                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
189                 }
190                 return z;
191 	}
192 	if(ix<=0x3e400000) {	/* x < 2**-27 */
193 	    return(u00 + tpi*__ieee754_log(x));
194 	}
195 	z = x*x;
196 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
197 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
198 	return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
199 }
200 
201 /* The asymptotic expansions of pzero is
202  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
203  * For x >= 2, We approximate pzero by
204  * 	pzero(x) = 1 + (R/S)
205  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
206  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
207  * and
208  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
209  */
210 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
211   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
212  -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
213  -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
214  -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
215  -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
216  -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
217 };
218 static const double pS8[5] = {
219   1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
220   3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
221   4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
222   1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
223   4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
224 };
225 
226 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
227  -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
228  -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
229  -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
230  -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
231  -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
232  -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
233 };
234 static const double pS5[5] = {
235   6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
236   1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
237   5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
238   9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
239   2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
240 };
241 
242 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
243  -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
244  -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
245  -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
246  -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
247  -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
248  -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
249 };
250 static const double pS3[5] = {
251   3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
252   3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
253   1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
254   1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
255   1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
256 };
257 
258 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
259  -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
260  -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
261  -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
262  -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
263  -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
264  -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
265 };
266 static const double pS2[5] = {
267   2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
268   1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
269   2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
270   1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
271   1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
272 };
273 
274 	/* Note: This function is only called for ix>=0x40000000 (see above) */
275 	static double pzero(double x)
276 {
277 	const double *p,*q;
278 	double z,r,s;
279 	int32_t ix;
280 	GET_HIGH_WORD(ix,x);
281 	ix &= 0x7fffffff;
282         assert(ix>=0x40000000 && ix<=0x48000000);
283 	if(ix>=0x40200000)     {p = pR8; q= pS8;}
284 	else if(ix>=0x40122E8B){p = pR5; q= pS5;}
285 	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
286 	else                   {p = pR2; q= pS2;}
287 	z = one/(x*x);
288 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
289 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
290 	return one+ r/s;
291 }
292 
293 
294 /* For x >= 8, the asymptotic expansions of qzero is
295  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
296  * We approximate pzero by
297  * 	qzero(x) = s*(-1.25 + (R/S))
298  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
299  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
300  * and
301  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
302  */
303 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
304   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
305   7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
306   1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
307   5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
308   8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
309   3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
310 };
311 static const double qS8[6] = {
312   1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
313   8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
314   1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
315   8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
316   8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
317  -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
318 };
319 
320 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
321   1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
322   7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
323   5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
324   1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
325   1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
326   1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
327 };
328 static const double qS5[6] = {
329   8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
330   2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
331   1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
332   5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
333   3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
334  -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
335 };
336 
337 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
338   4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
339   7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
340   3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
341   4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
342   1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
343   1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
344 };
345 static const double qS3[6] = {
346   4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
347   7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
348   3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
349   6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
350   2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
351  -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
352 };
353 
354 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
355   1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
356   7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
357   1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
358   1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
359   3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
360   1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
361 };
362 static const double qS2[6] = {
363   3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
364   2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
365   8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
366   8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
367   2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
368  -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
369 };
370 
371 	/* Note: This function is only called for ix>=0x40000000 (see above) */
372 	static double qzero(double x)
373 {
374 	const double *p,*q;
375 	double s,r,z;
376 	int32_t ix;
377 	GET_HIGH_WORD(ix,x);
378 	ix &= 0x7fffffff;
379         assert(ix>=0x40000000 && ix<=0x48000000);
380 	if(ix>=0x40200000)     {p = qR8; q= qS8;}
381 	else if(ix>=0x40122E8B){p = qR5; q= qS5;}
382 	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
383 	else                   {p = qR2; q= qS2;}
384 	z = one/(x*x);
385 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
386 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
387 	return (-.125 + r/s)/x;
388 }
389