xref: /relibc/openlibm/src/e_log2.c (revision 232ba9db6e4b36dd94ff2ca1022f9ba09970a2ec)
1 
2 /* @(#)e_log10.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include "cdefs-compat.h"
15 //__FBSDID("$FreeBSD: src/lib/msun/src/e_log2.c,v 1.4 2011/10/15 05:23:28 das Exp $");
16 
17 /*
18  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
19  * comments.
20  *
21  * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
22  * then does the combining and scaling steps
23  *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
24  * in not-quite-routine extra precision.
25  */
26 
27 #include <openlibm_math.h>
28 
29 #include "math_private.h"
30 #include "k_log.h"
31 
32 static const double
33 two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
34 ivln2hi    =  1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
35 ivln2lo    =  1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
36 
37 static const double zero   =  0.0;
38 
39 OLM_DLLEXPORT double
40 __ieee754_log2(double x)
41 {
42 	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
43 	int32_t i,k,hx;
44 	u_int32_t lx;
45 
46 	EXTRACT_WORDS(hx,lx,x);
47 
48 	k=0;
49 	if (hx < 0x00100000) {			/* x < 2**-1022  */
50 	    if (((hx&0x7fffffff)|lx)==0)
51 		return -two54/zero;		/* log(+-0)=-inf */
52 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
53 	    k -= 54; x *= two54; /* subnormal number, scale up x */
54 	    GET_HIGH_WORD(hx,x);
55 	}
56 	if (hx >= 0x7ff00000) return x+x;
57 	if (hx == 0x3ff00000 && lx == 0)
58 	    return zero;			/* log(1) = +0 */
59 	k += (hx>>20)-1023;
60 	hx &= 0x000fffff;
61 	i = (hx+0x95f64)&0x100000;
62 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
63 	k += (i>>20);
64 	y = (double)k;
65 	f = x - 1.0;
66 	hfsq = 0.5*f*f;
67 	r = k_log1p(f);
68 
69 	/*
70 	 * f-hfsq must (for args near 1) be evaluated in extra precision
71 	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
72 	 * This is fairly efficient since f-hfsq only depends on f, so can
73 	 * be evaluated in parallel with R.  Not combining hfsq with R also
74 	 * keeps R small (though not as small as a true `lo' term would be),
75 	 * so that extra precision is not needed for terms involving R.
76 	 *
77 	 * Compiler bugs involving extra precision used to break Dekker's
78 	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
79 	 * or the multi-precision calculations were avoided when double_t
80 	 * has extra precision.  These problems are now automatically
81 	 * avoided as a side effect of the optimization of combining the
82 	 * Dekker splitting step with the clear-low-bits step.
83 	 *
84 	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
85 	 * precision to avoid a very large cancellation when x is very near
86 	 * these values.  Unlike the above cancellations, this problem is
87 	 * specific to base 2.  It is strange that adding +-1 is so much
88 	 * harder than adding +-ln2 or +-log10_2.
89 	 *
90 	 * This uses Dekker's theorem to normalize y+val_hi, so the
91 	 * compiler bugs are back in some configurations, sigh.  And I
92 	 * don't want to used double_t to avoid them, since that gives a
93 	 * pessimization and the support for avoiding the pessimization
94 	 * is not yet available.
95 	 *
96 	 * The multi-precision calculations for the multiplications are
97 	 * routine.
98 	 */
99 	hi = f - hfsq;
100 	SET_LOW_WORD(hi,0);
101 	lo = (f - hi) - hfsq + r;
102 	val_hi = hi*ivln2hi;
103 	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
104 
105 	/* spadd(val_hi, val_lo, y), except for not using double_t: */
106 	w = y + val_hi;
107 	val_lo += (y - w) + val_hi;
108 	val_hi = w;
109 
110 	return val_lo + val_hi;
111 }
112