xref: /relibc/openlibm/src/k_tan.c (revision b5245817743e08d84f68f0e88cfa26bef8d9504b)
1 /* @(#)k_tan.c 1.5 04/04/22 SMI */
2 
3 /*
4  * ====================================================
5  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* INDENT OFF */
14 #include "cdefs-compat.h"
15 //__FBSDID("$FreeBSD: src/lib/msun/src/k_tan.c,v 1.13 2008/02/22 02:30:35 das Exp $");
16 
17 /* __kernel_tan( x, y, k )
18  * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
19  * Input x is assumed to be bounded by ~pi/4 in magnitude.
20  * Input y is the tail of x.
21  * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
22  *
23  * Algorithm
24  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
25  *	2. Callers must return tan(-0) = -0 without calling here since our
26  *	   odd polynomial is not evaluated in a way that preserves -0.
27  *	   Callers may do the optimization tan(x) ~ x for tiny x.
28  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
29  *	   [0,0.67434]
30  *		  	         3             27
31  *	   	tan(x) ~ x + T1*x + ... + T13*x
32  *	   where
33  *
34  * 	        |tan(x)         2     4            26   |     -59.2
35  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
36  * 	        |  x 					|
37  *
38  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
39  *		          ~ tan(x) + (1+x*x)*y
40  *	   Therefore, for better accuracy in computing tan(x+y), let
41  *		     3      2      2       2       2
42  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
43  *	   then
44  *		 		    3    2
45  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
46  *
47  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
48  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
49  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
50  */
51 
52 #include <openlibm_math.h>
53 
54 #include "math_private.h"
55 
56 static const double xxx[] = {
57 		 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */
58 		 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */
59 		 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */
60 		 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */
61 		 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */
62 		 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */
63 		 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */
64 		 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */
65 		 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */
66 		 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */
67 		 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */
68 		-1.85586374855275456654e-05,	/* BEF375CB, DB605373 */
69 		 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */
70 /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
71 /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
72 /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */
73 };
74 #define	one	xxx[13]
75 #define	pio4	xxx[14]
76 #define	pio4lo	xxx[15]
77 #define	T	xxx
78 /* INDENT ON */
79 
80 double
81 __kernel_tan(double x, double y, int iy) {
82 	double z, r, v, w, s;
83 	int32_t ix, hx;
84 
85 	GET_HIGH_WORD(hx,x);
86 	ix = hx & 0x7fffffff;			/* high word of |x| */
87 	if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */
88 		if (hx < 0) {
89 			x = -x;
90 			y = -y;
91 		}
92 		z = pio4 - x;
93 		w = pio4lo - y;
94 		x = z + w;
95 		y = 0.0;
96 	}
97 	z = x * x;
98 	w = z * z;
99 	/*
100 	 * Break x^5*(T[1]+x^2*T[2]+...) into
101 	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
102 	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
103 	 */
104 	r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
105 		w * T[11]))));
106 	v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
107 		w * T[12])))));
108 	s = z * x;
109 	r = y + z * (s * (r + v) + y);
110 	r += T[0] * s;
111 	w = x + r;
112 	if (ix >= 0x3FE59428) {
113 		v = (double) iy;
114 		return (double) (1 - ((hx >> 30) & 2)) *
115 			(v - 2.0 * (x - (w * w / (w + v) - r)));
116 	}
117 	if (iy == 1)
118 		return w;
119 	else {
120 		/*
121 		 * if allow error up to 2 ulp, simply return
122 		 * -1.0 / (x+r) here
123 		 */
124 		/* compute -1.0 / (x+r) accurately */
125 		double a, t;
126 		z = w;
127 		SET_LOW_WORD(z,0);
128 		v = r - (z - x);	/* z+v = r+x */
129 		t = a = -1.0 / w;	/* a = -1.0/w */
130 		SET_LOW_WORD(t,0);
131 		s = 1.0 + t * z;
132 		return t + a * (s + t * v);
133 	}
134 }
135